Liquid tunable microlenses based on MEMS techniques

The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven and those integrated within microfluidic systems.

[1]  William A. Shurcliff,et al.  Polarized Light , 2014 .

[2]  Akhlesh Lakhtakia Microlenses: Properties, Fabrication and Liquid Lenses , 2013 .

[3]  M. S. Millán Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter , 2012 .

[4]  Hongrui Jiang,et al.  Lateral tunable liquid microlenses for enhanced fluorescence emission in microfluidic channels , 2012 .

[5]  Hongrui Jiang,et al.  Electrowetting-driven variable-focus microlens on flexible surfaces. , 2012, Applied physics letters.

[6]  Hongrui Jiang,et al.  Fiber Endoscopes Utilizing Liquid Tunable-Focus Microlenses Actuated Through Infrared Light , 2011, Journal of Microelectromechanical Systems.

[7]  Hongrui Jiang,et al.  Focus-Tunable Microlens Arrays Fabricated on Spherical Surfaces , 2011, Journal of Microelectromechanical Systems.

[8]  Hongrui Jiang,et al.  Tunable microlens arrays actuated by various thermo-responsive hydrogel structures , 2010 .

[9]  Shin-Tson Wu,et al.  Effects of gravity on the shape of liquid droplets , 2010 .

[10]  Jinjie Shi,et al.  Tunable optofluidic microlens through active pressure control of an air–liquid interface , 2010 .

[11]  Huikai Xie,et al.  A Millimeter-Tunable-Range Microlens for Endoscopic Biomedical Imaging Applications , 2010, IEEE Journal of Quantum Electronics.

[12]  Hongrui Jiang,et al.  Tunable-focus microlens arrays on curved surfaces , 2010 .

[13]  Fabrication and characterization of optofluidic flexible meniscus―biconvex lens system , 2009 .

[14]  S. Jewell Polarized Light in Liquid Crystals and Polymers , 2009 .

[15]  H. Jiang,et al.  An endoscope utilizing tunable-focus microlenses actuated through infrared light , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[16]  Michael Rosenauer,et al.  3D fluidic lens shaping--a multiconvex hydrodynamically adjustable optofluidic microlens. , 2009, Lab on a chip.

[17]  Hongbin Yu,et al.  A liquid-filled tunable double-focus microlens. , 2009, Optics express.

[18]  Hongrui Jiang,et al.  Tunable liquid microlens actuated by infrared light-responsive hydrogel , 2008 .

[19]  Nguyen Binh-Khiem,et al.  Polymer thin film deposited on liquid for varifocal encapsulated liquid lenses , 2008 .

[20]  Different curvatures of tunable liquid microlens via the control of laminar flow rate , 2008 .

[21]  Zhongze Gu,et al.  Liquid microlens with tunable focal length and light transmission , 2008 .

[22]  Hongrui Jiang,et al.  Controlled Liquid–Air Interfaces and Interfacial Polymer Micromembranes in Microfluidic Channels , 2008, Journal of Microelectromechanical Systems.

[23]  Liang Dong,et al.  Selective Formation and Removal of Liquid Microlenses at Predetermined Locations Within Microfluidics Through Pneumatic Control , 2008, Journal of Microelectromechanical Systems.

[24]  Hans Zappe,et al.  Fiber optic tunable probe for endoscopic optical coherence tomography , 2008 .

[25]  Sindy K. Y. Tang,et al.  Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. , 2008, Lab on a chip.

[26]  Shin-Tson Wu,et al.  Tunable-focus liquid microlens array using dielectrophoretic effect. , 2008, Optics express.

[27]  Tony Jun Huang,et al.  Hydrodynamically tunable optofluidic cylindrical microlens. , 2007, Lab on a chip.

[28]  Liang Dong,et al.  Tunable and movable liquid microlens in situ fabricated within microfluidic channels , 2007 .

[29]  J. Yeh,et al.  Dielectrically actuated liquid lens. , 2007, Optics express.

[30]  Liang-Ting Jiang,et al.  A Novel Method for Fabrication of Plastic Microlens Array with Aperture Stops for Projection Photolithography , 2007 .

[31]  Arianna Menciassi,et al.  Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems , 2007, Biomedical microdevices.

[32]  Liang Dong,et al.  Variable‐Focus Liquid Microlenses and Microlens Arrays Actuated by Thermoresponsive Hydrogels , 2007 .

[33]  Shin-Tson Wu,et al.  Variable-focus liquid lens. , 2007, Optics express.

[34]  T. Scharf Polarized Light in Liquid Crystals and Polymers: Scharf/Polarized Light in Liquid Crystals and Polymers , 2006 .

[35]  R. Muller,et al.  Addressable Microlens Array to Improve Dynamic Range of Shack–Hartmann Sensors , 2006, Journal of Microelectromechanical Systems.

[36]  Liang Dong,et al.  pH-adaptive microlenses using pinned liquid-liquid interfaces actuated by pH-responsive hydrogel , 2006 .

[37]  Nasser Peyghambarian,et al.  Large-aperture switchable thin diffractive lens with interleaved electrode patterns , 2006 .

[38]  Shin‐Tson Wu,et al.  Tunable-focus liquid lens controlled using a servo motor. , 2006, Optics express.

[39]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[40]  J. Andrew Yeh,et al.  A tunable liquid-crystal microlens with hybrid alignment , 2006 .

[41]  J. Yeh,et al.  Variable focus dielectric liquid droplet lens. , 2006, Optics express.

[42]  Luke P. Lee,et al.  Biologically Inspired Artificial Compound Eyes , 2006, Science.

[43]  George M. Whitesides,et al.  Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels , 2006 .

[44]  Peter Malcolm Moran,et al.  Fluidic lenses with variable focal length , 2006 .

[45]  Steven S. Saliterman,et al.  Fundamentals of bioMEMS and medical microdevices , 2006 .

[46]  George M. Whitesides,et al.  Optical waveguiding in suspensions of dielectric particles. , 2005 .

[47]  Amir Hirsa,et al.  Electrochemically activated adaptive liquid lens , 2005 .

[48]  A. Jain,et al.  An electrothermal microlens scanner with low-voltage large-vertical-displacement actuation , 2005, IEEE Photonics Technology Letters.

[49]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[50]  Hans Zappe,et al.  Tunable microfluidic microlenses. , 2005, Applied optics.

[51]  B. Gale,et al.  A monolithic PDMS waveguide system fabricated using soft-lithography techniques , 2005, Journal of Lightwave Technology.

[52]  M. Prentiss,et al.  Optical waveguiding in suspensions of dielectric particles , 2005, 2005 Quantum Electronics and Laser Science Conference.

[53]  A. Tünnermann,et al.  Thin compound-eye camera. , 2005, Applied optics.

[54]  Shin‐Tson Wu,et al.  Variable-focus liquid lens by changing aperture , 2005 .

[55]  George M. Whitesides,et al.  Integrated fluorescent light source for optofluidic applications , 2005 .

[56]  G. Whitesides,et al.  Dynamic control of liquid-core/liquid-cladding optical waveguides , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[57]  Luke P. Lee,et al.  Artificial ommatidia by self-aligned microlenses and waveguides. , 2005, Optics letters.

[58]  Liwei Lin,et al.  Microplastic lens array fabricated by a hot intrusion process , 2004 .

[59]  Mangilal Agarwal,et al.  Polymer-based variable focal length microlens system , 2004 .

[60]  D. Liang,et al.  Actuation and Control of Droplets by Using Electrowetting-on-Dielectric , 2004 .

[61]  Rafael Tadmor,et al.  Line energy and the relation between advancing, receding, and young contact angles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[62]  N Iftimia,et al.  Adaptive ranging for optical coherence tomography. , 2004, Optics express.

[63]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[64]  Shin-Tson Wu,et al.  Liquid-crystal microlens arrays using patterned polymer networks. , 2004, Optics letters.

[65]  Ki-Hun Jeong,et al.  Tunable microdoublet lens array , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[66]  Weisong Wang,et al.  Variable-focusing microlens with microfluidic chip , 2004 .

[67]  H. Zappe,et al.  Fabrication and testing of micro-lens arrays by all-liquid techniques , 2004 .

[68]  Peter van Zant Microchip fabrication : a practical guide to semiconductor processing , 2004 .

[69]  吴建刚,et al.  Actuation and Control of Droplets by Using Electrowetting-on-Dielectric , 2004 .

[70]  Liwei Lin,et al.  Microplastic lens array fabricated by a hot intrusion process , 2004, Journal of Microelectromechanical Systems.

[71]  Luke P. Lee,et al.  Tunable liquid-filled microlens array integrated with microfluidic network. , 2003, Optics express.

[72]  Shin-Tson Wu,et al.  Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals , 2003 .

[73]  T. Umemura,et al.  Liquid/Liquid Optical Waveguides Using Sheath Flow as a New Tool for Liquid/Liquid Interfacial Measurements , 2003, Applied spectroscopy.

[74]  S. Yang,et al.  Tunable and Latchable Liquid Microlens with Photopolymerizable Components , 2003 .

[75]  Kenneth J. Weible,et al.  Miniaturized imaging systems , 2003 .

[76]  De-Ying Zhang,et al.  Fluidic adaptive lens with high focal length tunability , 2003 .

[77]  Jae-Hong Park,et al.  Fabrication of a focal length variable microlens array based on a nematic liquid crystal , 2003 .

[78]  Michael Sinclairb,et al.  Micro-optical Components for a MEMS Integrated Display , 2003 .

[79]  H Fujita,et al.  PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. , 2003, Lab on a chip.

[80]  George M. Whitesides,et al.  Fabrication of two-dimensional arrays of microlenses and their applications in photolithography , 2002 .

[81]  G. Whitesides,et al.  Fabrication of Diffractive and Micro‐optical Elements Using Microlens Projection Lithography , 2002 .

[82]  T. G. Harvey,et al.  CORRIGENDUM: Lens arrays for a three-dimensional imaging system , 2002 .

[83]  X. Yi,et al.  Monolithic integration technique for microlens arrays with infrared focal plane arrays , 2002 .

[84]  Sidney F. Ray,et al.  Applied Photographic Optics: Lenses and optical systems for photography, film, video, electronic and digital imaging , 2002 .

[85]  J. Gardner,et al.  Microsensors, MEMS, and Smart Devices , 2001 .

[86]  R. Völkel,et al.  Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection , 2001 .

[87]  J. Gardner,et al.  Microsensors, MEMS, and Smart Devices: Gardner/Microsensors, MEMS, and Smart Devices , 2001 .

[88]  B Messerschmidt,et al.  Endoscope-compatible confocal microscope using a gradient index-lens system , 2001 .

[89]  S. Campbell The Science and Engineering of Microelectronic Fabrication , 2001 .

[90]  N Davies,et al.  Lens arrays and optical system for orthoscopic three-dimensional imaging , 2001 .

[91]  S. Senturia Microsystem Design , 2000 .

[92]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[93]  W. Bachtold,et al.  Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays , 2000, IEEE Photonics Technology Letters.

[94]  Shah,et al.  Electrochemical principles for active control of liquids on submillimeter scales , 1999, Science.

[95]  Proposal of human eye's crystalline lens-like variable focusing lens , 1998, 1998 IEEE/LEOS Summer Topical Meeting. Digest. Broadband Optical Networks and Technologies: An Emerging Reality. Optical MEMS. Smart Pixels. Organic Optics and Optoelectronics (Cat. No.98TH8369).

[96]  Habib Hamam,et al.  A two-way optical interconnection network using a single mode fiber array , 1998 .

[97]  L V Wang Optical tomography for biomedical applications. , 1998, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[98]  G. Kovacs Micromachined Transducers Sourcebook , 1998 .

[99]  D. Schoetz Colon and rectal surgery , 1998, Diseases of the colon and rectum.

[100]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[101]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[102]  S. Herminghaus,et al.  Wetting: Statics and dynamics , 1997 .

[103]  George M. Whitesides,et al.  Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer , 1995 .

[104]  M. Dejule,et al.  Three-terminal adaptive nematic liquid-crystal lens device. , 1994, Optics letters.

[105]  B. Davies,et al.  Robotic surgery , 1993, IEEE Engineering in Medicine and Biology Magazine.

[106]  Toshiaki Nose,et al.  A Liquid Crystal Microlens with Hole-Patterned Electrodes on Both Substrates , 1992 .

[107]  Yoshihito Osada,et al.  Polymer Gels , 2012, Springer US.

[108]  A W Lohmann,et al.  Scaling laws for lens systems. , 1989, Applied optics.

[109]  R. M. Sillitto,et al.  Introduction to Classical and Modern Optics , 1986 .

[110]  P. Gennes Wetting: statics and dynamics , 1985 .

[111]  S T Kowel,et al.  Adaptive spherical lens. , 1984, Applied optics.

[112]  S T Kowel,et al.  Focusing by electrical modulation of refraction in a liquid crystal cell. , 1984, Applied optics.

[113]  Susumu Sato Liquid-Crystal Lens-Cells with Variable Focal Length , 1979 .

[114]  J. Meyer–Arendt INTRODUCTION TO CLASSICAL AND MODERN OPTICS , 1984 .

[115]  M. Wiener,et al.  Animal eyes. , 1957, The American orthoptic journal.