Stability of Horndeski vector-tensor interactions

We study the Horndeski vector-tensor theory that leads to second order equations of motion and contains a non-minimally coupled abelian gauge vector field. This theory is remarkably simple and consists of only 2 terms for the vector field, namely: the standard Maxwell kinetic term and a coupling to the dual Riemann tensor. Furthermore, the vector sector respects the U(1) gauge symmetry and the theory contains only one free parameter, M 2 , that controls the strength of the non-minimal coupling. We explore the theory in a de Sitter spacetime and study the presence of instabilities and show that it corresponds to an attractor solution in the presence of the vector field. We also investigate the cosmological evolution and stability of perturbations in a general FLRW spacetime. We find that a sufficient condition for the absence of ghosts is M 2 > 0. Moreover, we study further constraints coming from imposing the absence of Laplacian instabilities. Finally, we study the stability of the theory in static and spherically symmetric backgrounds (in particular, Schwarzschild and Reissner-Nordstrom-de Sitter). We find that the theory, quite generally, do have ghosts or Laplacian instabilities in regions of spacetime where the non-minimal interaction dominates over the Maxwell term. We also calculate the propagation speed in these spacetimes and show that superluminality is a quite generic phenomenon in this theory. ©2013 IOP Publishing Ltd and Sissa Medialab srl.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  G. W. Horndeski Second-order scalar-tensor field equations in a four-dimensional space , 1974 .

[3]  G. W. Horndeski Conservation of charge and the Einstein–Maxwell field equations , 1976 .

[4]  H. Buchdahl On a Lagrangian for non-minimally coupled gravitational and electromagnetic fields , 1979 .

[5]  I. T. Drummond,et al.  QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons , 1980 .

[6]  F. Müller-Hoissen Non-minimal coupling from dimensional reduction of the Gauss-Bonnet action , 1988 .

[7]  F. Müller-Hoissen,et al.  Spherically symmetric solutions of the non-minimally coupled Einstein-Maxwell equations , 1988 .

[8]  Turner,et al.  Inflation-produced, large-scale magnetic fields. , 1988, Physical review. D, Particles and fields.

[9]  Ford Inflation driven by a vector field. , 1989, Physical review. D, Particles and fields.

[10]  Hawking,et al.  Chronology protection conjecture. , 1992, Physical review. D, Particles and fields.

[11]  Barrow Why the Universe is not anisotropic. , 1995, Physical review. D, Particles and fields.

[12]  V. LeBlanc Asymptotic states of magnetic Bianchi I cosmologies , 1995 .

[13]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[14]  Variation of the speed of light due to non-minimal coupling between electromagnetism and gravity , 2003, gr-qc/0303081.

[15]  P. Lilje,et al.  Asymmetries in the Cosmic Microwave Background Anisotropy Field , 2004 .

[16]  K. Land,et al.  Examination of evidence for a preferred axis in the cosmic radiation anisotropy. , 2005, Physical review letters.

[17]  Dark energy as a massive vector field , 2007, gr-qc/0701029.

[18]  The Axis of Evil revisited , 2006, astro-ph/0611518.

[19]  V. Mukhanov,et al.  Vector inflation , 2008, 0802.2068.

[20]  T. Koivisto,et al.  Vector field models of inflation and dark energy , 2008, 0805.4229.

[21]  J. B. Jiménez,et al.  Cosmic vector for dark energy , 2008, 0801.1486.

[22]  A. Vikman,et al.  k-Essence, superluminal propagation, causality and emergent geometry , 2007, 0708.0561.

[23]  Andrei V. Frolov,et al.  DEFROST: a new code for simulating preheating after inflation , 2008, 0809.4904.

[24]  K. Koyama,et al.  Self-accelerating universe in Galileon cosmology , 2009, 0909.4538.

[25]  C. Deffayet,et al.  Covariant Galileon , 2009, 0901.1314.

[26]  J. Soda,et al.  Inflationary universe with anisotropic hair. , 2009, Physical review letters.

[27]  T. Koivisto,et al.  Perturbations in electromagnetic dark energy , 2009, 0907.3648.

[28]  C. Contaldi,et al.  Instability of the Ackerman-Carroll-Wise model, and problems with massive vectors during inflation , 2008, 0812.1231.

[29]  C. Contaldi,et al.  Instability of anisotropic cosmological solutions supported by vector fields. , 2008, Physical review letters.

[30]  S. Deser,et al.  Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress tensors , 2009, 0906.1967.

[31]  J. B. Jiménez,et al.  Cosmological electromagnetic fields and dark energy , 2008, 0811.0566.

[32]  J. B. Jiménez,et al.  Viability of vector-tensor theories of gravity , 2008, 0811.0784.

[33]  S. Carroll,et al.  Instabilities in the Aether , 2008, 0812.1049.

[34]  J. Khoury,et al.  Galileon Cosmology , 2009, 0905.1325.

[35]  C. Contaldi,et al.  Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature , 2009, 0909.3524.

[36]  R. Lazkoz,et al.  Cosmic vector for dark energy: Constraints from supernovae, cosmic microwave background, and baryon acoustic oscillations , 2009 .

[37]  C. Armendariz-Picon,et al.  Aether Unleashed , 2009, 0904.0809.

[38]  T. Koivisto,et al.  Inflation from N-Forms and its stability , 2009, 0903.4158.

[39]  M. M. Sheikh-Jabbari,et al.  M-flation: inflation from matrix valued scalar fields , 2009, 0903.1481.

[40]  R. Rattazzi,et al.  Galileon as a local modification of gravity , 2008, 0811.2197.

[41]  A. Tolley,et al.  DBI and the Galileon reunited , 2010, 1003.5917.

[42]  J. B. Jiménez,et al.  The electromagnetic dark sector , 2009, 0903.4672.

[43]  S. Deser,et al.  Arbitrary p-form Galileons , 2010, 1007.5278.

[44]  C. Burrage,et al.  Galileon inflation , 2010, 1009.2497.

[45]  M. Trodden,et al.  Multifield Galileons and higher codimension branes , 2010, 1008.1305.

[46]  Antonio Padilla,et al.  Bi-galileon theory I: motivation and formulation , 2010, 1007.5424.

[47]  D. Mota,et al.  Cosmology of the selfaccelerating third order Galileon , 2010, 1009.6151.

[48]  C. Stivers Class , 2010 .

[49]  J. Uzan,et al.  Vector theories in cosmology , 2009, 0912.0481.

[50]  T. Sotiriou,et al.  f(R) Theories Of Gravity , 2008, 0805.1726.

[51]  R. Durrer,et al.  Can slow roll inflation induce relevant helical magnetic fields , 2010, 1005.5322.

[52]  S. Nesseris,et al.  Observational constraints on Galileon cosmology , 2010, 1010.0407.

[53]  M. Sami,et al.  Galileon gravity and its relevance to late time cosmic acceleration , 2010, 1004.2808.

[54]  S. Tsujikawa,et al.  Cosmology of a Covariant Galileon Field , 2010, 1007.2700.

[55]  G. Gabadadze,et al.  Generalization of the Fierz-Pauli action , 2010, 1007.0443.

[56]  A. Golovnev Linear perturbations in vector inflation and stability issues , 2009, 0910.0173.

[57]  A. Knebe,et al.  Vector dark energy and high-z massive clusters , 2011, 1108.4173.

[58]  P. Brax,et al.  Perturbation theory in K-inflation coupled to matter , 2011, 1102.1917.

[59]  D. Pirtskhalava,et al.  Cosmic acceleration and the helicity-0 graviton , 2010, 1010.1780.

[60]  M. Trodden,et al.  Generalizing Galileons , 2011, 1104.2088.

[61]  S. Tsujikawa,et al.  Matter perturbations in Galileon cosmology , 2010, 1011.6132.

[62]  L. Heisenberg,et al.  Cosmology of the Galileon from Massive Gravity , 2011, 1106.3312.

[63]  K. V. Acoleyen,et al.  Galileons from Lovelock actions , 2011, 1102.0487.

[64]  Clare Burrage,et al.  De Sitter Galileon , 2011, 1104.0155.

[65]  J. Cembranos,et al.  Isotropy theorem for cosmological vector fields , 2012, 1203.6221.

[66]  M. Thorsrud,et al.  Cosmology of a scalar field coupled to matter and an isotropy-violating Maxwell field , 2012, 1205.6261.

[67]  C. Burrage,et al.  Chronology protection in Galileon models and massive gravity , 2011, 1111.5549.

[68]  S. Tsujikawa,et al.  Cosmological constraints on extended Galileon models , 2011, 1112.1774.

[69]  S. Patil,et al.  Effective theories of single field inflation when heavy fields matter , 2012, 1201.6342.

[70]  E. Copeland,et al.  Galileons with Gauge Symmetries , 2011, 1112.0968.

[71]  G. Shore,et al.  The effect of gravitational tidal forces on renormalized quantum fields , 2011, 1111.3174.

[72]  M. Trodden,et al.  Gauged Galileons From Branes , 2011, 1201.0015.

[73]  A. Knebe,et al.  N-body simulations with a cosmic vector for dark energy , 2012, 1205.1695.

[74]  J. Soda Statistical anisotropy from anisotropic inflation , 2012, 1201.6434.

[75]  E. Linder,et al.  Trial of Galileon gravity by cosmological expansion and growth observations , 2012 .

[76]  Silvia Pascoli,et al.  Linear Perturbations in Galileon Gravity Models , 2012 .

[77]  J. Cembranos,et al.  Isotropy theorem for cosmological Yang-Mills theories , 2012, 1212.3201.

[78]  M. Thorsrud,et al.  Cosmologies in Horndeski’s second-order vector-tensor theory , 2012, 1211.5403.

[79]  R. Durrer,et al.  Cosmological magnetic fields: their generation, evolution and observation , 2013 .

[80]  C. Baugh,et al.  Parameter space in Galileon gravity models , 2013, 1302.6241.

[81]  K. Koyama,et al.  The role of vector fields in modified gravity scenarios , 2013, 1307.0077.

[82]  Screening vector field modifications of general relativity , 2012, 1212.1923.

[83]  L. Heisenberg,et al.  Superluminality in the Bi- and Multi-Galileon , 2013, 1303.0274.

[84]  M. Sheikh-Jabbari,et al.  Gauge fields and inflation , 2012, 1212.2921.

[85]  Scaling cosmological solutions with Horndeski Lagrangian , 2013 .

[86]  QUINTESSENCE WITH KALUZA-KLEIN TYPE COUPLINGS TO MATTER AND AN ISOTROPY-VIOLATING VECTOR FIELD , 2013, 1303.2469.

[87]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.