Tungsten dopant incorporation for bandgap and type engineering of perovskite crystals

Organic–inorganic hybrid halide perovskites have shown to be viable semiconductor materials, as the absorber layer of solar cells. Unfortunately, the polycrystalline qualities of perovskite films result in nonuniform coverage or a high recombination rate, which weakens the photoelectric capabilities of thin films. Here, the pure and tungsten (W)-doped methylammonium lead bromide (CH3NH3PbBr3 or MAPbBr3) films are deposited to FTO-glass substrates using the sol–gel spin coating method. The W-doping causes the nucleation and crystallization processes, which then have an impact on the film’s characteristics. It is discovered that the introduction of tungsten metal significantly enhances the quality of the perovskite film, resulting in larger grain sizes, lower band gap energy, and shorter recombination lifetimes, increasing the power conversion efficiency of perovskite thin film solar cells.

[1]  S. Hussain,et al.  Understanding the influence of Cu ions implantation towards highly efficient MAPbBr3 perovskite solar cells , 2023, Optical Materials.

[2]  S. Hussain,et al.  Tuning the band gap edges of perovskite material by Cd doping for achieving high current density in perovskite solar cells , 2023, Ceramics International.

[3]  S. Hussain,et al.  700 keV Au ions beam effect on the structural, optical and photovoltaic properties of MAPbI3 solar cells , 2022, Ceramics International.

[4]  I. Hussainova,et al.  Role of A-site (Sr), B-site Y, and A, B sites (Sr, Y) substitution in lead-free BaTiO3 ceramic compounds: Structural, optical, microstructure, mechanical, and thermal conductivity properties , 2022, Ceramics International.

[5]  S. Hussain,et al.  The Effect of 600 keV Ag Ion Irradiation on the Structural, Optical, and Photovoltaic Properties of MAPbBr3 Films for Perovksite Solar Cell Applications , 2022, Materials.

[6]  S. Hussain,et al.  Effect of Cd Doping on the Structural, Optical, and Photovoltaic Properties of SnS Films , 2022, Journal of Materials Research and Technology.

[7]  T. Yohannes,et al.  Role of additives and surface passivation on the performance of perovskite solar cells , 2021, Materials for Renewable and Sustainable Energy.

[8]  Samy F. Mahmoud,et al.  Decorating wide band gap CH3NH3PbBr3 perovskite with 4AMP for highly efficient and enhanced open circuit voltage perovskite solar cells , 2021, Solar Energy.

[9]  S. Hussain,et al.  Investigations the structural, optical and photovoltaic properties of La doped TiO2 photoanode based dye sensitized solar cells , 2021, Optical Materials.

[10]  Mingxuan Sun,et al.  Decoration of MAPbI3 Perovskites with Carbon Dots for Enhanced Photoelectrochemical Performance and Stability , 2020 .

[11]  W. Su,et al.  High-efficiency perovskite solar cell using cobalt doped nickel oxide hole transport layer fabricated by NIR process , 2020 .

[12]  Keqing Huang,et al.  Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor , 2020 .

[13]  Zhanhu Guo,et al.  Boosting multiple interfaces by co-doped graphene quantum dots for high efficiency and durability perovskite solar cells. , 2020, ACS applied materials & interfaces.

[14]  L. Manna,et al.  Permanent Lattice Compression of Lead-Halide Perovskite for Persistently Enhanced Optoelectronic Properties , 2020, ACS Energy Letters.

[15]  Abdullah M. Asiri,et al.  One-step facile synthesis of Nd2O3/ZnO nanostructures for an efficient selective 2,4-dinitrophenol sensor probe , 2019, Applied Surface Science.

[16]  W. Han,et al.  Crystallization accompanied by local distortion behavior of Sn-doped amorphous Ge2Sb2Te5 induced by a picosecond pulsed laser , 2019, Journal of Non-Crystalline Solids.

[17]  Jinsong Huang,et al.  Large electrostrictive response in lead halide perovskites , 2018, Nature Materials.

[18]  H. Snaith,et al.  Impact of Bi3+ Heterovalent Doping in Organic-Inorganic Metal Halide Perovskite Crystals. , 2018, Journal of the American Chemical Society.

[19]  Muthaiah Shellaiah,et al.  Structural and Photophysical Properties of Methylammonium Lead Tribromide (MAPbBr3) Single Crystals , 2017, Scientific Reports.

[20]  Nakita K. Noel,et al.  Mechanism for rapid growth of organic–inorganic halide perovskite crystals , 2016, Nature Communications.

[21]  Lin Sang,et al.  Solution growth and morphology of CH3NH3PbBr3 single crystals in different solvents , 2016 .

[22]  Chain‐Shu Hsu,et al.  Rejuvenation of perovskite solar cells , 2016 .

[23]  A. Alivisatos,et al.  Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. , 2016, ACS nano.

[24]  Sergii Yakunin,et al.  Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites , 2016, Nature Photonics.

[25]  Xin-Ke Wang,et al.  Exciton localization in solution-processed organolead trihalide perovskites , 2016, Nature Communications.

[26]  Zhitang Song,et al.  Cr-doped Ge2Sb2Te5 for ultra-long data retention phase change memory , 2015 .

[27]  Bao Zhang,et al.  Preparation of dye-sensitized solar cells with high photocurrent and photovoltage by using mesoporous titanium dioxide particles as photoanode material , 2015, Nano Research.

[28]  Qingfeng Dong,et al.  Organometal Trihalide Perovskite Single Crystals: A Next Wave of Materials for 25% Efficiency Photovoltaics and Applications Beyond? , 2015 .

[29]  Chengtian Lin,et al.  Growth of large CH3NH3PbX3 (X=I, Br) single crystals in solution , 2015 .

[30]  Miaoqiang Lyu,et al.  Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. , 2015, Chemical communications.

[31]  Junjie Si,et al.  Hot‐Electron Injection in a Sandwiched TiOx–Au–TiOx Structure for High‐Performance Planar Perovskite Solar Cells , 2015 .

[32]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[33]  Tien Khee Ng,et al.  The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites , 2015 .

[34]  Martin A. Green,et al.  Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition , 2015 .

[35]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[36]  Hideyuki Tanaka,et al.  Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light. , 2015, The journal of physical chemistry letters.

[37]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[38]  E. Diau,et al.  A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites , 2013 .

[39]  Narda L. López Contreras,et al.  Gas sensing properties of Nd2O3 nanostructured microspheres , 2013 .

[40]  Liangcai Wu,et al.  Phase change behaviors of Zn-doped Ge2Sb2Te5 films , 2012 .

[41]  Peyman Servati,et al.  An efficient inverted organic solar cell with improved ZnO and gold contact layers , 2012 .

[42]  T. Xu,et al.  Electrophoretic deposition of carbon nanotubes films as counter electrodes of dye-sensitized solar cells , 2011 .

[43]  K. A. Bhatti,et al.  Investigations of the structural, morphological and electrical properties of multilayer ZnO/TiO 2 thin films, deposited by sol–gel technique , 2016 .