The Uncertainty Principle of Game Theory

In 1928, von Neumann's minimax theorem [33] on two-player, zero-sum games showed that, in general, optimal strategies of players are random, even if the rules of the game do not involve chance. In this paper we investigate the degree of uncertainty or randomness possible in optimal strategies. We show that Heisenberg's uncertainty principle of physics corresponds to a similar principle for zero-sum games and derive an explicit lower bound for the uncertainty of a game. We also demonstrate that this lower bound is a constraint on the set of possible optimal strategies and apply it to develop a simple but effective method for finding an approximately optimal strategy. A two-player, finite, zero-sum game is traditionally described by a payoff matrix A = iatj), where the rows correspond to the strategies of the first player (P) and the columns correspond to the strategies of the second player (Q). (The reason for these particular player "names" will become apparent later.) The individual strategies / and j are called pure strategies. The real number ai} is simply the amount of money or payoff that the first player receives from the second player if the first player chooses strategy "/" and the second player chooses strategy "/'; the chosen strategy of the opponent is unknown to each player. If

[1]  P. Jordan Über eine neue Begründung der Quantenmechanik. II. , 1927 .

[2]  M. Dresher Games of Strategy: Theory and Applications , 2007 .

[3]  J. Wheeler,et al.  Quantum theory and measurement , 1983 .

[4]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[5]  J. Hilgevoord,et al.  The Mathematical Expression of the Uncertainty Principle , 1988 .

[6]  Samuel Karlin,et al.  Mathematical Methods and Theory in Games, Programming, and Economics , 1961 .

[7]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[8]  M. Sion On general minimax theorems , 1958 .

[9]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[10]  Morton D. Davis,et al.  Games of Strategy: Theory and Application. , 1962 .

[11]  Howard Raiffa,et al.  Games And Decisions , 1958 .

[12]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[13]  L. Szilard On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. , 1964, Behavioral science.

[14]  H. Groemer,et al.  On the min-max theorem for finite two-person zero-sum games , 1967 .

[15]  Eliahu Levy,et al.  A note about entropy , 2006 .

[16]  W. Beckner Inequalities in Fourier analysis , 1975 .

[17]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[18]  Jürgen Kindler,et al.  A Simple Proof of Sion's Minimax Theorem , 2005, The American mathematical monthly.

[19]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[20]  E. Schrödinger,et al.  What is life? : the physical aspect of the living cell , 1946 .

[21]  Complementarity and the uncertainty relations , 1999, quant-ph/9904069.

[22]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[23]  Hans Maassen A discrete entropic uncertainty relation , 1990 .

[24]  Melvin Dresher,et al.  PROBABILITY OF A PURE EQUILIBRIUM POINT IN n-PERSON GAMES , 1970 .

[25]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[26]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[27]  W. L. Cowley The Uncertainty Principle , 1949, Nature.

[28]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[29]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[30]  H. Toutenburg Vorob'ev, N. N., Game Theory, Lectures for Economists and Systems Scientists. New York‐Heidelberg‐Berlin. Springer‐Verlag. 1977. XI, 178 S., 60 Abb., DM 38,20. US $ 16.80. (Applications of Mathematics 7) , 1979 .

[31]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[32]  Kraus Complementary observables and uncertainty relations. , 1987, Physical review. D, Particles and fields.

[33]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .