Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

Abstract The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. This paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipated fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.

[1]  Michael A. Groeber,et al.  Grain Level Dwell Fatigue Crack Nucleation Model for Ti Alloys Using Crystal Plasticity Finite Element Analysis , 2009 .

[2]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[3]  David L. McDowell,et al.  Simulation-based strategies for microstructure-sensitive fatigue modeling , 2007 .

[4]  H. Zbib,et al.  Microstructure-sensitive investigation of magnesium alloy fatigue , 2015 .

[5]  M. Sauzay,et al.  Physically-Based Simulations of the Cyclic Behavior of FCC Polycrystals , 2014 .

[6]  J. Stephan,et al.  Investigation of the effect of grain clusters on fatigue crack initiation in polycrystals , 2010 .

[7]  A. Maniatty,et al.  A geometric approach to modeling microstructurally small fatigue crack formation: II. Physically based modeling of microstructure-dependent slip localization and actuation of the crack nucleation mechanism in AA 7075-T651 , 2010 .

[8]  D. McDowell,et al.  Microstructure-sensitive computational modeling of fatigue crack formation , 2010 .

[9]  David L. McDowell,et al.  Mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals , 2014 .

[10]  N. Saintier,et al.  Statistical assessment of multiaxial HCF criteria at the grain scale , 2014 .

[11]  David L. McDowell,et al.  Assessment of small fatigue crack growth driving forces in single crystals with and without slip bands , 2012, International Journal of Fracture.

[12]  Ricardo A. Lebensohn,et al.  Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms , 2009 .

[13]  Ali Fatemi,et al.  Multiaxial Fatigue Life Predictions Under the Influence of Mean-Stresses , 1988 .

[14]  R. Tryon,et al.  Orientation Imaging Microscopy of fatigue crack formation in Waspaloy: Crystallographic conditions for crack nucleation , 2010 .

[15]  D. McDowell,et al.  Microstructure-sensitive modeling of high cycle fatigue , 2010 .

[16]  David L. McDowell,et al.  Recent developments in assessing microstructure-sensitive early stage fatigue of polycrystals , 2014 .

[17]  David L. McDowell,et al.  A mesoscale approach for growth of 3D microstructurally small fatigue cracks in polycrystals , 2014 .

[18]  D. McDowell,et al.  Effect of annealing twins on crack initiation under high cycle fatigue conditions , 2013, Journal of Materials Science.

[19]  D. McDowell,et al.  Polycrystal orientation distribution effects on microslip in high cycle fatigue , 2003 .

[20]  M. Sauzay,et al.  Polycrystalline microstructure, cubic elasticity, and nucleation of high-cycle fatigue cracks , 2006 .

[21]  Tresa M. Pollock,et al.  Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy , 2012 .

[22]  A. Rollett,et al.  Crystal plasticity finite element analysis for René88DT statistical volume element generation , 2015 .

[23]  M. Sauzay Cubic elasticity and stress distribution at the free surface of polycrystals , 2007 .

[24]  P. Villechaise,et al.  Plastic Slip and Early Stage of Fatigue Damage in Polycrystals: Comparison between Experiments and Crystal Plasticity Finite Elements Simulations , 2014 .

[25]  D. McDowell,et al.  Simulated extreme value fatigue sensitivity to inclusions and pores in martensitic gear steels , 2011 .

[26]  David L. McDowell,et al.  In-situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments , 2004 .

[27]  D. McDowell,et al.  A δJ-BASED APPROACH TO BIAXIAL FATIGUE , 1992 .

[28]  Caoimhe A. Sweeney,et al.  The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation , 2013 .

[29]  David L. McDowell,et al.  Estimating fatigue sensitivity to polycrystalline Ni‐base superalloy microstructures using a computational approach , 2007 .

[30]  M. Sauzay,et al.  Stage I surface crack formation in thermal fatigue: A predictive multi-scale approach , 2010 .

[31]  David L. McDowell,et al.  Microstructure-sensitive probabilistic modeling of HCF crack initiation and early crack growth in Ni-base superalloy IN100 notched components , 2012 .

[32]  D. McDowell,et al.  Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100 , 2010 .