Shock models with dependence and asymmetric linkages

Abstract This paper introduces a new class of copulas and shows its relevance for applications. In particular, a stochastic interpretation in terms of a system of dependence components affected by a global shock is given. As a main feature of the model, the global shock has an opposite effect on the different components of the system. Copulas generated by this mechanism are characterized in the bivariate case and their main properties are illustrated. Connections with concepts like semilinear copulas and conic aggregation functions are also highlighted. Moreover, a high dimensional extension is presented.

[1]  Jun Li,et al.  Integrals based on monotone set functions , 2015, Fuzzy Sets Syst..

[2]  Radko Mesiar,et al.  Conic aggregation functions , 2011, Fuzzy Sets Syst..

[3]  Radko Mesiar,et al.  Universal integrals based on copulas , 2014, Fuzzy Optimization and Decision Making.

[4]  Stéphane Girard,et al.  Marshall-Olkin type copulas generated by a global shock , 2016, J. Comput. Appl. Math..

[5]  Carles M. Cuadras,et al.  A continuous general multivariate distribution and its properties , 1981 .

[6]  B. Baets,et al.  The role of generalized convexity in conic copula constructions , 2015 .

[7]  B. De Baets,et al.  Semiquadratic copulas based on horizontal and vertical interpolation , 2015, Fuzzy Sets Syst..

[8]  R. Nelsen An Introduction to Copulas , 1998 .

[9]  M. Scarsini,et al.  Characterization of a Marshall-Olkin type class of distributions , 1987 .

[10]  S. Mulinacci Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures , 2015, 1502.01912.

[11]  Albert W. Marshall,et al.  Copulas, marginals, and joint distributions , 1996 .

[12]  Juan Fernández-Sánchez,et al.  A note on the notion of singular copula , 2013, Fuzzy Sets Syst..

[13]  R. Mesiar,et al.  Conjunctors and their Residual Implicators: Characterizations and Construction Methods , 2007 .

[14]  H. Joe Dependence Modeling with Copulas , 2014 .

[15]  Eckhard Liebscher,et al.  Construction of asymmetric multivariate copulas , 2008 .

[16]  Radko Mesiar,et al.  Semilinear copulas , 2008, Fuzzy Sets Syst..

[17]  Fabrizio Durante,et al.  A new class of symmetric bivariate copulas , 2006 .

[18]  R. Zitikis,et al.  Paths and Indices of Maximal Tail Dependence , 2014, 1405.1326.

[19]  I. Olkin,et al.  A Multivariate Exponential Distribution , 1967 .

[20]  Fabrizio Durante,et al.  A New Characterization of Bivariate Copulas , 2010 .

[21]  Christian Genest,et al.  Assessing and Modeling Asymmetry in Bivariate Continuous Data , 2013 .

[22]  Matjaz Omladic,et al.  Shock models with recovery option via the maxmin copulas , 2016, Fuzzy Sets Syst..

[23]  Petr Cintula,et al.  Graded dominance and related graded properties of fuzzy connectives , 2015, Fuzzy Sets Syst..

[24]  On the singular components of a copula , 2015, Journal of Applied Probability.

[25]  S. Girard,et al.  Copulas Based on Marshall–Olkin Machinery , 2015 .

[26]  F. Durante Simulating from a Family of Generalized Archimedean Copulas , 2014 .

[27]  Radko Mesiar,et al.  Flipping and cyclic shifting of binary aggregation functions , 2009, Fuzzy Sets Syst..

[28]  U. Cherubini,et al.  Systemic Risk with Exchangeable Contagion: Application to the European Banking System , 2015, 1502.01918.

[29]  C. Sempi,et al.  Principles of Copula Theory , 2015 .

[30]  Bernard De Baets,et al.  Ortholinear and paralinear semi-copulas , 2014, Fuzzy Sets Syst..

[31]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[32]  Jan-Frederik Mai,et al.  Simulating from the Copula that Generates the Maximal Probability for a Joint Default Under Given (Inhomogeneous) Marginals , 2014 .

[33]  Fabrizio Durante,et al.  On a family of multivariate copulas for aggregation processes , 2007, Inf. Sci..

[34]  F. Durante Construction of non-exchangeable bivariate distribution functions , 2009 .