SWIRLING FLOW IN A TUBE WITH VARIABLY-SHAPED OUTLET ORIFICES: AN LES AND VLES STUDY

Abstract The swirling flow in a tube with the outlet designed in the form of an orifice nozzle with centered and eccentrical openings, investigated experimentally by Grundmann et al. (2012), was studied computationally by employing Large Eddy Simulation (LES) method and a Hybrid LES/RANS (Reynolds-Averaged Navier–Stokes) method. The latter method, denoted by VLES (Very Large Eddy Simulation) according to Speziale (1998), represents a variable resolution computational scheme enabling a seamless transition from RANS to the direct numerical solution of the Navier–Stokes equations (DNS) depending on the ratio of the turbulent viscosities associated with the unresolved scales corresponding to the LES cut-off and the ‘unsteady’ scales pertinent to the turbulent properties of the VLES residual motion, which varies within the flow domain. Before computing the swirling pipe configuration, the VLES model is interactively validated in the process of the model derivation in some generic flows featured by natural decay of the homogeneous isotropic turbulence and separation from a curved continuous surface. The background RANS model representing the basis of the VLES method is the eddy-viscosity-based ζ - f model proposed by Hanjalic et al. (2004). The inflowing swirl generated by two tangential inlets has the same intensity in all cases considered. However, the abrupt outlet cross-section contraction created by variably-shaped orifices causes strong modification of the flow within the tube resembling a three-layered structure characterized by an alternating axial velocity directions. Both LES and VLES methods, unlike the RANS method employing the same turbulence model, returned such a behavior in good agreement with experimental data.

[1]  Florian R. Menter,et al.  The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description , 2010 .

[2]  R. Kermode,et al.  Static pressure and velocity profiles in swirling incompressible tube flow , 1969 .

[3]  Branislav Basara,et al.  Experimental investigations and computations of unsteady flow past a real car using a robust elliptic relaxation closure with a universal wall treatment , 2007 .

[4]  Michael Manhart,et al.  Flow over periodic hills – Numerical and experimental study in a wide range of Reynolds numbers , 2009 .

[5]  Sinisa Krajnovic,et al.  Near-Wall Formulation of the Partially Averaged Navier-Stokes Turbulence Model , 2011 .

[6]  Milton S. Plesset,et al.  Viscous Effects in Rayleigh-Taylor Instability. , 1974 .

[7]  Michael A. Leschziner,et al.  Computation of highly swirling confined flow with a Reynolds stress turbulence model , 1989 .

[8]  Wei Shyy,et al.  Filter-based unsteady RANS computations , 2004 .

[9]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[10]  Osami Kitoh,et al.  Experimental study of turbulent swirling flow in a straight pipe , 1991, Journal of Fluid Mechanics.

[11]  Bruno Chaouat,et al.  A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows , 2005 .

[12]  J. Deardorff Stratocumulus-capped mixed layers derived from a three-dimensional model , 1980 .

[13]  Richard D. Sandberg,et al.  A Methodology for Simulating Compressible Turbulent Flows , 2003 .

[14]  Roland Schiestel,et al.  Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations , 2005 .

[15]  K. Hanjalic,et al.  Compound Wall Treatment for RANS Computation of Complex Turbulent Flows and Heat Transfer , 2007 .

[16]  Suad Jakirlić,et al.  Modeling Rotating and Swirling Turbulent Flows: A Perpetual Challenge , 2002 .

[17]  Sinisa Krajnovic,et al.  A new very large eddy simulation model for simulation of turbulent flow , 2012 .

[18]  Vijay K. Dhir,et al.  Turbulent flow field in tangentially injected swirl flows in tubes , 1994 .

[19]  R. Roback,et al.  Mass and Momentum Turbulent Transport. Experiments with Confined Swirling Coaxial Jets , 1984 .

[20]  Fue-Sang Lien,et al.  Towards a Unified Turbulence Simulation Approach for Wall-Bounded Flows , 2010 .

[21]  M. Hadžiabdić,et al.  A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD , 2004 .

[22]  Robert J. Poole,et al.  Influence of outlet geometry on strongly swirling turbulent flow through a circular tube , 2006 .

[23]  Giovanni Delibra,et al.  Vortex structures and heat transfer in a wall-bounded pin matrix: LES with a RANS wall-treatment , 2010 .

[24]  J. Deardorff Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer , 1974 .

[25]  C. G. Speziale Turbulence modeling for time-dependent RANS and VLES : a review , 1998 .

[26]  Jochen Fröhlich,et al.  Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions , 2005, Journal of Fluid Mechanics.

[27]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[28]  Michael Manhart,et al.  Flow over periodic hills: an experimental study , 2011 .

[29]  C. Tropea,et al.  Experimental investigation of helical structures in swirling flows , 2012 .

[30]  Michael A. Leschziner,et al.  Modelling two- and three-dimensional separation from curved surfaces with anisotropy-resolving turbulence closures , 2004 .