Thermal Effect on Microchannel Electro-osmotic Flow With Consideration of Thermodiffusion

[1]  J. N. Agar,et al.  Thermal diffusion in solutions of electrolytes , 1960, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.

[2]  D. Burgreen,et al.  Electrokinetic Flow in Ultrafine Capillary Slits1 , 1964 .

[3]  C. L. Rice,et al.  Electrokinetic Flow in a Narrow Cylindrical Capillary , 1965 .

[4]  R. Zare,et al.  Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis , 1988 .

[5]  C. Mou,et al.  Single-ion heat of transport in electrolyte solutions: a hydrodynamic theory , 1989 .

[6]  J. Knox,et al.  Temperature effects in capillary electrophoresis. 1: Internal capillary temperature and effect upon performance , 1994 .

[7]  Ajdari,et al.  Electro-osmosis on inhomogeneously charged surfaces. , 1995, Physical review letters.

[8]  P. Paul,et al.  Imaging of Pressure- and Electrokinetically Driven Flows through Open Capillaries. , 1998, Analytical chemistry.

[9]  Dongqing Li,et al.  Modeling forced liquid convection in rectangular microchannels with electrokinetic effects , 1998 .

[10]  Howard H. Hu,et al.  Numerical simulation of electroosmotic flow. , 1998, Analytical chemistry.

[11]  S. Jacobson,et al.  Computer simulations of electrokinetic transport in microfabricated channel structures. , 1998, Analytical chemistry.

[12]  G. Whitesides,et al.  Patterning electro-osmotic flow with patterned surface charge. , 2000, Physical review letters.

[13]  J. Santiago Electroosmotic flows in microchannels with finite inertial and pressure forces. , 2001, Analytical chemistry.

[14]  T. Johnson,et al.  Imaging of electroosmotic flow in plastic microchannels. , 2001, Analytical chemistry.

[15]  D. Bornhop,et al.  Quantification and evaluation of Joule heating in on‐chip capillary electrophoresis , 2002, Electrophoresis.

[16]  S. Ghosal Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross-section and wall charge , 2002, Journal of Fluid Mechanics.

[17]  Yuejun Kang,et al.  Electroosmotic flow in a capillary annulus with high zeta potentials. , 2002, Journal of colloid and interface science.

[18]  M. J. Kim,et al.  Electro-osmosis-driven micro-channel flows: A comparative study of microscopic particle image velocimetry measurements and numerical simulations , 2002 .

[19]  Dongqing Li,et al.  A new method of evaluating the average electro-osmotic velocity in microchannels. , 2002, Journal of colloid and interface science.

[20]  K. Takehara,et al.  Particle tracking techniques for electrokinetic microchannel flows. , 2002, Analytical chemistry.

[21]  L. Locascio,et al.  Microfluidic temperature gradient focusing. , 2002, Analytical chemistry.

[22]  L. Fu,et al.  Analysis of electroosmotic flow with step change in zeta potential. , 2003, Journal of colloid and interface science.

[23]  Chun Yang,et al.  Modeling of Electroosmotic Flow and Capillary Electrophoresis with the Joule Heating Effect: The Nernst−Planck Equation versus the Boltzmann Distribution , 2003 .

[24]  B. W. Webb,et al.  Fully-Developed Thermal Transport in Combined Pressure and Electro-Osmotically Driven Flow in Microchannels , 2003 .

[25]  Dongqing Li,et al.  Electroosmotic velocity profiles in microchannels , 2003 .

[26]  Dongqing Li,et al.  Analysis of electrokinetic flow in microfluidic networks , 2004 .

[27]  D. Erickson,et al.  Integrated microfluidic devices , 2004 .

[28]  J. Chai,et al.  Joule heating effect on electroosmotic flow and mass species transport in a microcapillary , 2004 .

[29]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[30]  P. Dutta,et al.  Joule heating effects in electroosmotically driven microchannel flows , 2004 .

[31]  Dongqing Li,et al.  Electroosmotic flow with Joule heating effects. , 2004, Lab on a chip.

[32]  David Sinton,et al.  Microscale flow visualization , 2004 .

[33]  Dongqing Li,et al.  Thermal end effects on electroosmotic flow in a capillary , 2004 .

[34]  Marcos,et al.  Frequency-dependent velocity and vorticity fields of electro-osmotic flow in a closed-end cylindrical microchannel , 2005 .

[35]  Y. Lam,et al.  On Electrokinetic Mass Transport in a Microchannel With Joule Heating Effects , 2005 .

[36]  X. Huang,et al.  Joule heating induced transient temperature field and its effects on electroosmosis in a microcapillary packed with microspheres. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[37]  Dongqing Li,et al.  Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge. , 2005, Journal of colloid and interface science.

[38]  B. W. Webb,et al.  Convective heat transfer characteristics of electro-osmotically generated flow in microtubes at high wall potential , 2005 .

[39]  N. Nguyen,et al.  Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique. , 2006, The Journal of chemical physics.

[40]  Y. Lam,et al.  Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels , 2006, Electrophoresis.

[41]  S. Chakraborty Analytical solutions of Nusselt number for thermally fully developed flow in microtubes under a combined action of electroosmotic forces and imposed pressure gradients , 2006 .

[42]  S. Bhattacharjee,et al.  Electrokinetic and Colloid Transport Phenomena , 2006 .

[43]  S. Hannani,et al.  An analytical solution for thermally fully developed combined pressure – electroosmotically driven flow in microchannels , 2007 .

[44]  Chun Yang,et al.  Effect of finite reservoir size on electroosmotic flow in microchannels , 2007 .

[45]  Jiehong Wu,et al.  Micropumping of biofluids by alternating current electrothermal effects , 2007 .

[46]  N. Nguyen,et al.  Diagnosis of transient electrokinetic flow in microfluidic channels , 2007 .

[47]  K. Ooi,et al.  Characterization of electroosmotic flow in rectangular microchannels , 2007 .

[48]  Sun Min Kim,et al.  Theoretical and numerical analysis of temperature gradient focusing via Joule heating. , 2007, Lab on a chip.

[49]  Xiangchun Xuan,et al.  Joule heating in electrokinetic flow , 2008, Electrophoresis.

[50]  Chun Yang,et al.  Numerical modeling of Joule heating‐induced temperature gradient focusing in microfluidic channels , 2008, Electrophoresis.

[51]  C. Hodge,et al.  Photobleaching‐based flow measurement in a commercial capillary electrophoresis chip instrument , 2008, Electrophoresis.

[52]  A. Würger Transport in charged colloids driven by thermoelectricity. , 2008, Physical review letters.

[53]  Q. Kang,et al.  Electrokinetic transport in microchannels with random roughness. , 2009, Analytical chemistry.

[54]  C. Kuang,et al.  Study of the rise time in electroosmotic flow within a microcapillary. , 2009, Analytical chemistry.

[55]  Hsueh-Chia Chang,et al.  Electrothermal ac electro-osmosis , 2009 .

[56]  J. Sweedler,et al.  Nanofluidics in chemical analysis. , 2010, Chemical Society reviews.

[57]  Chun Yang,et al.  Concentration enhancement of sample solutes in a sudden expansion microchannel with Joule heating , 2010 .

[58]  B. Kirby,et al.  Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems , 2010, Electrophoresis.

[59]  Guoqing Hu,et al.  Joule heating effects on electroosmotic flow in insulator‐based dielectrophoresis , 2011, Electrophoresis.

[60]  Mark Burns,et al.  Microfluidic chemical analysis systems. , 2011, Annual review of chemical and biomolecular engineering.

[61]  C. Kuang,et al.  Ultrafast measurement of transient electroosmotic flow in microfluidics , 2011 .

[62]  W. Wang,et al.  Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating. , 2011, Lab on a chip.

[63]  C. Ng,et al.  Dispersion due to electroosmotic flow in a circular microchannel with slowly varying wall potential and hydrodynamic slippage , 2012 .

[64]  C. Ng,et al.  Electroosmotic Flow Through a Circular Tube With Slip-Stick Striped Wall , 2012 .

[65]  Asymptotic analysis for the conjugate heat transfer problem in an electro-osmotic flow with temperature-dependent properties in a capillary , 2012 .

[66]  A. Bar-Cohen Gen-3 Thermal Management Technology: Role of Microchannels and Nanostructures in an Embedded Cooling Paradigm , 2013 .

[67]  S. Chakraborty,et al.  Electrohydrodynamics within the electrical double layer in the presence of finite temperature gradients. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.