Spatially sensitive statistical shape analysis for pedestrian recognition from LIDAR data
暂无分享,去创建一个
Michalis A. Savelonas | Ioannis Pratikakis | Theoharis Theoharis | Georgios Thanellas | Rémy Bendahan | Frédéric Abad | T. Theoharis | I. Pratikakis | M. Savelonas | R. Bendahan | F. Abad | G. Thanellas
[1] Federico Tombari,et al. Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.
[2] Cordelia Schmid,et al. Aggregating Local Image Descriptors into Compact Codes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[3] Huimin Ma,et al. 3D Object Proposals for Accurate Object Class Detection , 2015, NIPS.
[4] Nico Blodow,et al. Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.
[5] Jianguo Liu,et al. Global–local articulation pattern-based pedestrian detection using 3D Lidar data , 2016 .
[6] Guillaume Lavoué,et al. Combination of bag-of-words descriptors for robust partial shape retrieval , 2012, The Visual Computer.
[7] Matti Pietikäinen,et al. Face Recognition with Local Binary Patterns , 2004, ECCV.
[8] Leonidas J. Guibas,et al. Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.
[9] Cristiano Premebida,et al. Pedestrian detection combining RGB and dense LIDAR data , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[10] Sebastian Thrun,et al. Towards 3D object recognition via classification of arbitrary object tracks , 2011, 2011 IEEE International Conference on Robotics and Automation.
[11] Takashi Naito,et al. Pedestrian recognition using high-definition LIDAR , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).
[12] Nico Blodow,et al. Persistent Point Feature Histograms for 3D Point Clouds , 2008 .
[13] Andrew E. Johnson,et al. Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[14] Bill Triggs,et al. Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).