Enhanced MRI-guided radiotherapy with gadolinium-based nanoparticles: preclinical evaluation with an MRI-linac

[1]  Emmanuel L Barbier,et al.  Targeting brain metastases with ultrasmall theranostic nanoparticles, a first-in-human trial from an MRI perspective , 2020, Science Advances.

[2]  P. Keall,et al.  Technical Note: The first live treatment on a 1.0 Tesla inline MRI-linac. , 2019, Medical physics.

[3]  J. Debus,et al.  MR-guidance in clinical reality: current treatment challenges and future perspectives , 2019, Radiation oncology.

[4]  Sebastian Klüter,et al.  Technical design and concept of a 0.35 T MR-Linac , 2019, Clinical and translational radiation oncology.

[5]  Rob H.N. Tijssen,et al.  Adaptive radiotherapy: The Elekta Unity MR-linac concept , 2019, Clinical and translational radiation oncology.

[6]  H. Minn,et al.  Gadolinium retention in gliomas and adjacent normal brain tissue: association with tumor contrast enhancement and linear/macrocyclic agents , 2019, Neuroradiology.

[7]  O. Tillement,et al.  Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a phase I study protocol , 2019, BMJ Open.

[8]  Z. Kuncic,et al.  IMPACT OF NANOPARTICLE CLUSTERING ON DOSE RADIO-ENHANCEMENT. , 2018, Radiation protection dosimetry.

[9]  G. Hanna,et al.  Towards photon radiotherapy treatment planning with high Z nanoparticle radiosensitisation agents: the Relative Biological Effective Dose (RBED) framework , 2018, Cancer Nanotechnology.

[10]  M. Barton,et al.  MRI-Linear Accelerator Radiotherapy Systems. , 2018, Clinical oncology (Royal College of Radiologists (Great Britain)).

[11]  Cyrus Chargari,et al.  AGuIX® from bench to bedside—Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine , 2018, The British journal of radiology.

[12]  P Keall,et al.  Imaging performance of a dedicated radiation transparent RF coil on a 1.0 Tesla inline MRI-linac , 2018, Physics in medicine and biology.

[13]  Z. Kuncic,et al.  Nanoparticle radio-enhancement: principles, progress and application to cancer treatment , 2018, Physics in medicine and biology.

[14]  A N T J Kotte,et al.  First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment , 2017, Physics in medicine and biology.

[15]  O. Tillement,et al.  MRI-guided clinical 6-MV radiosensitization of glioma using a unique gadolinium-based nanoparticles injection. , 2016, Nanomedicine.

[16]  H. Paganetti,et al.  Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol , 2016, Physics in medicine and biology.

[17]  Tianyu Zhao,et al.  Online Magnetic Resonance Image Guided Adaptive Radiation Therapy: First Clinical Applications. , 2016, International journal of radiation oncology, biology, physics.

[18]  Ross Berbeco,et al.  AGuIX nanoparticles as a promising platform for image-guided radiation therapy , 2015, Cancer Nanotechnology.

[19]  B. Fallone,et al.  The rotating biplanar linac-magnetic resonance imaging system. , 2014, Seminars in radiation oncology.

[20]  Stuart Crozier,et al.  The Australian magnetic resonance imaging-linac program. , 2014, Seminars in radiation oncology.

[21]  François Estève,et al.  Photoactivation of gold nanoparticles for glioma treatment. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[22]  J. Pignol,et al.  A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness , 2013, Physics in medicine and biology.

[23]  Cédric Louis,et al.  A top-down synthesis route to ultrasmall multifunctional Gd-based silica nanoparticles for theranostic applications. , 2013, Chemistry.

[24]  J. Hainfeld,et al.  Gold nanoparticle imaging and radiotherapy of brain tumors in mice. , 2013, Nanomedicine.

[25]  Karl T. Butterworth,et al.  Physical basis and biological mechanisms of gold nanoparticle radiosensitization. , 2012, Nanoscale.

[26]  H. Remita,et al.  Nano-Sensitization under gamma rays and fast ion radiation , 2012 .

[27]  Thierry Epicier,et al.  Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. , 2011, ACS nano.

[28]  M. Mendenhall,et al.  Energy Dependence of Gold Nanoparticle Radiosensitization in Plasmid DNA , 2011 .

[29]  A. Schiller,et al.  Morphological studies of rat brain tumors induced by N-nitrosomethylurea. , 1971, Journal of neurosurgery.

[30]  Maxime Henry,et al.  Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. , 2015, Small.

[31]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..