Mechanobiologie der Frakturheilung Teil 2

ZusammenfassungKlinische Studien erlauben keine quantitative Korrelation zwischen der Beschreibung der Osteosynthesestabilität und dem Erfolg der Knochenheilung. Damit ist keine gezielte biomechanische Verbesserung der Osteosynthesetechnik möglich. Die geeignetste Größe, um die Stabilität der Osteosynthese quantitativ zu beschreiben, ist die Steifigkeit der Frakturfixation. Diese wurde für verschiedene Osteosyntheseverfahren in vitro biomechanisch und in wenigen Studien in vivo am Patienten bestimmt. Mithilfe numerischer Knochenheilungsprogramme ist es erstmals möglich, die in der Grundlagenforschung gefundenen Regeln zur Gewebedifferenzierung (Knochenheilung) zu nutzen, um günstige Osteosynthesesteifigkeiten zu berechnen. Am Beispiel der Tibiafraktur mit einer Marknagelstabilisierung konnten die Möglichkeiten der numerischen Simulation der Frakturheilung gezeigt werden. Solche Programme erlauben die Simulation des Einflusses verschiedener Osteosynthesefaktoren wie Marknageldurchmesser, Frakturform, Frakturspaltbreite und Nagelmaterial. Um aufwendige Berechnungen für verschiedene Osteosynthesen zu vermeiden, wurde ein Kennfeld berechnet, das die zu erwartende Knochenheilungsqualität in Abhängigkeit von der axialen Steifigkeit und der Schersteifigkeit der Osteosynthese darstellt. Vergleicht man die aus der Literatur bekannten Steifigkeiten der wichtigsten Osteosyntheseverfahren mit diesem Kennfeld, wird deutlich, dass die Verfahren meistens eine sehr geringe Scher- und/oder Torsionssteifigkeit aufweisen und damit die Heilung verzögern können. Bei der Plattenosteosynthese dagegen gibt es neben geeigneten und zu geringen Steifigkeiten auch Situationen, wo hohe axiale Steifigkeiten direkt unterhalb der Platte nur kleinste Gewebedehnungen erlauben, die einen zu geringen Reiz für die Knochenneubildung setzen und dadurch eine Verzögerung der Knochenheilung verursachen können.AbstractClinical studies do not allow a quantitative correlation between stability of fracture fixation and outcome of bone healing. This limits the biomechanical improvement of fracture fixation techniques. The most practical quantitative parameter to describe the stability of a fracture fixation is the stiffness. This can be determined for several types of fixation through biomechanical methods and in some clinical studies in vivo. By using numerical fracture healing models, it is now possible to use the tissue differentiation rules found in basic research to calculate optimal stiffness parameters for various fixation techniques. For a tibial fracture as an example the possibilities of a numerical fracture healing simulation have been demonstrated. The effects of the diameter of an intramedullary nail, type of fracture, fracture gap size and nail material on healing could be demonstrated. To circumvent complex and time consuming calculations for several fixations a map was calculated which shows the expected bone healing quality as a function of the axial stiffness and the shear stiffness of the fixation device. By comparing the stiffness of various fixation techniques with the stiffness map it becomes evident that the methods most often used (e.g. unreamed nail, plate and external fixator) have a low shear and/or rotational stiffness that is too low to achieve the optimal healing outcome. The high axial stiffness of plates next to the plate surface can lead to very low tissue strain directly adjacent to the plate and can delay the bone healing process at this location.

[1]  Georg N Duda,et al.  Timely fracture-healing requires optimization of axial fixation stability. , 2007, The Journal of bone and joint surgery. American volume.

[2]  L. Claes,et al.  Delayed bone healing following high tibial osteotomy related to increased implant stiffness in locked plating. , 2014, Injury.

[3]  K. Stürmer,et al.  Die Wertigkeit verschiedener Versuchstierspecies für experimentelle Untersuchungen am Knochen , 1990 .

[4]  Emil H Schemitsch,et al.  Randomized Trial of Reamed and Unreamed Intramedullary Nailing of Tibial Shaft Fractures , 2009 .

[5]  K Schwieger,et al.  Angle stable interlocking screws improve construct stability of intramedullary nailing of distal tibia fractures: a biomechanical study. , 2009, Injury.

[6]  L. Claes Biomechanical Principles and Mechanobiologic Aspects of Flexible and Locked Plating , 2011, Journal of orthopaedic trauma.

[7]  G. Guyatt,et al.  Predictors of reoperation following operative management of fractures of the tibial shaft , 2003, Journal of orthopaedic trauma.

[8]  K Seide,et al.  Three-dimensional load measurements in an external fixator. , 2004, Journal of biomechanics.

[9]  Stephan M Perren,et al.  Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. , 2002, The Journal of bone and joint surgery. British volume.

[10]  P. Blachut,et al.  Interlocking Intramedullary Nailing with and without Reaming for the Treatment of Closed Fractures of the Tibial Shaft. A Prospective, Randomized Study* , 1997 .

[11]  L. Schweiberer,et al.  Die biologischen Bedingungen atropher und hypertropher Pseudarthrosen der Schaftknochen Ursachen und Erscheinungsbild , 1999, Der Chirurg.

[12]  Lutz Claes,et al.  Disadvantages of interfragmentary shear on fracture healing—mechanical insights through numerical simulation , 2014, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[13]  Lutz Claes,et al.  Intact fibula improves fracture healing in a rat tibia osteotomy model , 2005, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[14]  L. Claes,et al.  Influence of size and stability of the osteotomy gap on the success of fracture healing , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[15]  Michael Bottlang,et al.  Far cortical locking can improve healing of fractures stabilized with locking plates. , 2010, The Journal of bone and joint surgery. American volume.

[16]  B. Mckibbin,et al.  The biology of fracture healing in long bones. , 1978, The Journal of bone and joint surgery. British volume.

[17]  E. Schneider,et al.  [Biomechanics of the ring fixator--contributions of individual structural elements]. , 1992, Der Unfallchirurg.

[18]  P. Augat,et al.  Interfragmentary Movement in Diaphyseal Tibia Fractures Fixed With Locked Intramedullary Nails , 2008, Journal of orthopaedic trauma.

[19]  J L Cunningham,et al.  Measurement of fracture movement in patients treated with unilateral external skeletal fixation. , 1989, Journal of biomedical engineering.

[20]  E Schneider,et al.  Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixators. , 1990, Journal of biomechanical engineering.

[21]  C. Court-Brown,et al.  Reamed or unreamed nailing for closed tibial fractures. A prospective study in Tscherne C1 fractures. , 1996, The Journal of bone and joint surgery. British volume.

[22]  Ulrich Dieter,et al.  Biomechanical testing of the LCP--how can stability in locked internal fixators be controlled? , 2003, Injury.

[23]  P. Augat,et al.  Biomechanical comparison of locked plate osteosynthesis, reamed and unreamed nailing in conventional interlocking technique, and unreamed angle stable nailing in distal tibia fractures , 2012, The journal of trauma and acute care surgery.

[24]  M. Bottlang,et al.  Locked Plating of Distal Femur Fractures Leads to Inconsistent and Asymmetric Callus Formation , 2010, Journal of orthopaedic trauma.

[25]  P. Prendergast,et al.  A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. , 2002, Journal of biomechanics.

[26]  Klaus Püschel,et al.  Influence of intramedullary nail diameter and locking mode on the stability of tibial shaft fracture fixation , 2009, Archives of Orthopaedic and Trauma Surgery.

[27]  L. Claes,et al.  Optimization of intramedullary nailing by numerical simulation of fracture healing , 2012, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[28]  L Claes [Measuring bone healing in osteosynthesis with external fixator using the Fraktometer FM 100]. , 1991, Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen.

[29]  N P Haas,et al.  Angle stable locking reduces interfragmentary movements and promotes healing after unreamed nailing. Study of a displaced osteotomy model in sheep tibiae. , 2005, The Journal of bone and joint surgery. American volume.

[30]  Lutz Claes,et al.  Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli , 2013, Journal of The Royal Society Interface.

[31]  L. Claes,et al.  Numerical Simulation of Callus Healing for Optimization of Fracture Fixation Stiffness , 2014, PloS one.

[32]  L. Claes,et al.  Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. , 1998, Journal of biomechanics.

[33]  J L Cunningham,et al.  Axial movement and tibial fractures. A controlled randomised trial of treatment. , 1991, The Journal of bone and joint surgery. British volume.

[34]  C. Krettek,et al.  Biomechanical study of nine different tibia locking nails. , 1996, Journal of orthopaedic trauma.

[35]  Schenk Rk [Histology of primary bone healing in light of new concepts of bone reconstruction (author's transl)]. , 1978 .

[36]  L Claes,et al.  A method to determine the 3-D stiffness of fracture fixation devices and its application to predict inter-fragmentary movement. , 1997, Journal of biomechanics.

[37]  G. Zych,et al.  Rates and Odds Ratios for Complications in Closed and Open Tibial Fractures Treated With Unreamed, Small Diameter Tibial Nails: A Multicenter Analysis of 467 Cases , 2001, Journal of orthopaedic trauma.

[38]  W. Mutschler,et al.  Monitoring and healing analysis of 100 tibial shaft fractures , 2002, Langenbeck's Archives of Surgery.

[39]  Rik Huiskes,et al.  Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. , 2006, Journal of biomechanics.

[40]  R. Nanda,et al.  Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability? , 2007, Injury.

[41]  L Claes,et al.  A numerical model of the fracture healing process that describes tissue development and revascularisation , 2011, Computer methods in biomechanics and biomedical engineering.

[42]  A. Alegakis,et al.  Factors affecting fracture healing after intramedullary nailing of the tibial diaphysis for closed and grade I open fractures. , 2006, The Journal of bone and joint surgery. British volume.

[43]  J Cordey,et al.  [Tissue differences in fracture healing (author's transl)]. , 1977, Unfallheilkunde.

[44]  J. Kenwright,et al.  Dynamic Interfragmentary Motion in Fractures During Routine Patient Activity , 1997, Clinical orthopaedics and related research.

[45]  J. Madsen,et al.  Should Insertion of Intramedullary Nails for Tibial Fractures Be With or Without Reaming?: A Prospective, Randomized Study With 3.8 Years' Follow-up , 2004, Journal of orthopaedic trauma.

[46]  P. Augat,et al.  Effects of construct stiffness on healing of fractures stabilized with locking plates. , 2010, The Journal of bone and joint surgery. American volume.

[47]  L. Claes,et al.  Wie wirkt sich die begleitende Fibulaosteosynthese bei der kompletten Unterschenkelfraktur aus — eine experimentelle Studie und das klinische Korrelat , 1993 .