An integrated approach to the conceptual design and development of an intelligent autonomous mobile robot

This paper proposes a new approach to the design and development of an intelligent mobile robot and discusses the complex functional structure of such systems, providing solutions to some typical design problems. The proposed design approach provides a clearer view of the design problems from a function-oriented interdisciplinary point of view. The approach proves to be a useful tool in allowing the designer to cross the boundaries of technical disciplines and optimise the interdisciplinary system's components, thereby improving the overall system performance. The paper also presents a case study where it takes the design problem from the most abstract level up to the final stage, in which the developed autonomous mobile robot's specifications are verified and validated. The issues addressed in this paper include the design, development, systems integration, and experimental testing of the intelligent mobile robot.

[1]  Rolf Johansson,et al.  Integrated architecture for industrial robot programming and control , 1999, Robotics Auton. Syst..

[2]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[3]  Wynne Hsu,et al.  Conceptual design: issues and challenges , 2000, Comput. Aided Des..

[4]  Gerry B. Andeen,et al.  Toward a science of assembly , 1997, Robotics Auton. Syst..

[5]  Robert Martin,et al.  Robot teleoperation featuring commercially available wireless network cards , 2006, J. Netw. Comput. Appl..

[6]  Hans-Peter Messmer The Indispensable PC Hardware Book , 1999 .

[7]  Wenjie Dong,et al.  On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty , 2002, Autom..

[8]  A. Bradshaw,et al.  A New Conceptual Approach to the Design of Hybrid Control Architecture for Autonomous Mobile Robots , 2002, J. Intell. Robotic Syst..

[9]  Ju-Jang Lee,et al.  Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainty and disturbances , 2003 .

[10]  Anita M. Flynn,et al.  Mobile robots: inspiration to implementation , 1993 .

[11]  Dongbing Gu,et al.  Neural predictive control for a car-like mobile robot , 2002, Robotics Auton. Syst..

[12]  Joris De Schutter,et al.  A multisine approach for trajectory optimization based on information gain , 2003, Robotics Auton. Syst..

[13]  Giovanni Muscato,et al.  Kinematics, dynamics and control of a hybrid robot Wheeleg , 2003, Robotics Auton. Syst..

[14]  Anders Orebäck,et al.  Evaluation of Architectures for Mobile Robotics , 2003, Auton. Robots.

[15]  Hugh F. Durrant-Whyte,et al.  Multisensor data fusion for underwater navigation , 2001, Robotics Auton. Syst..

[16]  Helmut Hoyer,et al.  Autonomous robot technology for advanced wheelchair and robotic aids for people with disabilities , 1995, Robotics Auton. Syst..

[17]  Bhaskaran Gopalakrishnan,et al.  Design and development of an autonomous mobile smart vehicle: a mechatronics application , 2004 .

[18]  David M. Auslander,et al.  A design and implementation methodology for real time control of mechanical systems , 1995 .

[19]  Branko Ster,et al.  An Integrated Learning Approach to Environment Modelling in Mobile Robot Navigation , 2002, Neurocomputing.

[20]  Glen Mullineux,et al.  A decomposition strategy for conceptual design , 2000 .

[21]  Devdas Shetty,et al.  Mechatronics system design , 1997 .

[22]  Y.-M. Deng,et al.  A dual-stage functional modelling framework with multi-level design knowledge for conceptual mechanical design , 2000 .

[23]  Frank Junker A systematics of modelling mechatronic systems , 1995 .

[24]  Diane J. Cook,et al.  Incorporating decision-theoretic planning in a robot architecture , 2003, Robotics Auton. Syst..

[25]  Kazys,et al.  Application of orthogonal ultrasonic signals and binaural processing for imaging of the environment , 2000, Ultrasonics.

[26]  Bret A. Wallach,et al.  Autonomous vacuum cleaner , 1997 .

[27]  Vadim I. Utkin,et al.  A three-layered hierarchical path control system for mobile robots: Algorithms and experiments , 1995, Robotics Auton. Syst..

[28]  Giulio Sandini,et al.  Sensing group report , 1996, Robotics Auton. Syst..

[29]  Indra Narayan Kar,et al.  Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics , 2006, Neurocomputing.

[30]  Farzad Pourboghrat,et al.  Adaptive control of dynamic mobile robots with nonholonomic constraints , 2002, Comput. Electr. Eng..

[31]  A. Bradshaw,et al.  Computer aided conceptual design '97 : proceedings of the 1997 Lancaster International Workshop on Engineering Design CACD'97. , 1997 .

[32]  Andreas Kurz ALEF: An autonomous vehicle which learns basic skills and constructs maps for navigation , 1995, Robotics Auton. Syst..

[33]  Jon Rigelsford,et al.  Behaviour‐based Robotics , 2001 .

[34]  Malrey Lee,et al.  Evolution of behaviors in autonomous robot using artificial neural network and genetic algorithm , 2003, Inf. Sci..

[35]  Wendelin Feiten,et al.  Sonar sensing for low-cost indoor mobility , 1995, Robotics Auton. Syst..

[36]  Jacob Buur,et al.  A theoretical approach to mechatronics design , 1990 .

[37]  James Trevelyan,et al.  Simplifying robotics - A challenge for research , 1997, Robotics Auton. Syst..

[38]  José-Enrique Simó-Ten,et al.  Differentiating walls from corners using the amplitude of ultrasonic echoes , 2005, Robotics Auton. Syst..

[39]  Hiromitsu Shimakawa,et al.  Real-Time Reactions in Supervisory Control According to Data Freshness , 2001, Real-Time Systems.

[40]  Ben J. A. Kröse,et al.  Heading direction of a mobile robot from the optical flow , 2000, Image Vis. Comput..

[41]  Ruqing Yang,et al.  MAS based embedded control system design method and a robot development paradigm , 2006 .

[42]  Rolf Isermann,et al.  Information processing for mechatronic systems , 1996, Robotics Auton. Syst..

[43]  John Counsell Ian Porter David Dawson,et al.  Schemebuilder: computer aided knowledge based design of mechatronic systems , 1999 .

[44]  B Yilma,et al.  Behavior-based artificial intelligence in miniature mobile robot , 1999 .

[45]  Giuliana Mattiazzo,et al.  A fuzzy controlled pneumatic gripper for asparagus harvesting , 1994 .

[46]  José Santos-Victor,et al.  Information Sampling for vision-based robot navigation , 2002, Robotics Auton. Syst..

[47]  Hong Xu,et al.  A behaviour-based blackboard architecture for reactive and efficient task execution of an autonomous robot , 1997, Robotics Auton. Syst..

[48]  Clarence W. de Silva,et al.  Development and implementation of a real-time open-architecture control system for industrial robot systems , 2004, Eng. Appl. Artif. Intell..

[49]  Javier Gonzalez,et al.  The NEXUS open system for integrating robotic software , 1999 .