A comparison of rapid-scanning X-ray fluorescence mapping and magnetic resonance imaging to localize brain iron distribution.

The clinical diagnosis of many neurodegenerative disorders relies primarily or exclusively on observed behaviors rather than measurable physical tests. One of the hallmarks of Alzheimer disease (AD) is the presence of amyloid-containing plaques associated with deposits of iron, copper and/or zinc. Work in other laboratories has shown that iron-rich plaques can be seen in the mouse brain in vivo with magnetic resonance imaging (MRI) using a high-field strength magnet but this iron cannot be visualized in humans using clinical magnets. To improve the interpretation of MRI, we correlated iron accumulation visualized by X-ray fluorescence spectroscopy, an element-specific technique with T1, T2, and susceptibility weighted MR (SWI) in a mouse model of AD. We show that SWI best shows areas of increased iron accumulation when compared to standard sequences.

[1]  W H Oldendorf,et al.  Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores , 1993, Magnetic resonance in medicine.

[2]  Clifford R Jack,et al.  Magnetic Resonance Imaging of Alzheimer's Pathology in the Brains of Living Transgenic Mice: A New Tool in Alzheimer's Disease Research , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[3]  Rudolf Stollberger,et al.  Automated unwrapping of MR phase images applied to BOLD MR‐venography at 3 Tesla , 2003, Journal of magnetic resonance imaging : JMRI.

[4]  D. Salmon,et al.  Physical basis of cognitive alterations in alzheimer's disease: Synapse loss is the major correlate of cognitive impairment , 1991, Annals of neurology.

[5]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[6]  N. Schuff,et al.  Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease , 2001, Journal of neurology, neurosurgery, and psychiatry.

[7]  E. Haacke,et al.  Susceptibility-Weighted MR Imaging: A Review of Clinical Applications in Children , 2008, American Journal of Neuroradiology.

[8]  J. Babb,et al.  Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. , 2002, AJNR. American journal of neuroradiology.

[9]  R A Knight,et al.  MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. , 1999, Radiology.

[10]  E M Haacke,et al.  Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging. , 2007, AJNR. American journal of neuroradiology.

[11]  D. Kido,et al.  Mineralization of the Deep Gray Matter with Age: A Retrospective Review with Susceptibility-Weighted MR Imaging , 2008, American Journal of Neuroradiology.

[12]  Marc Dhenain,et al.  Age-related evolution of amyloid burden, iron load, and MR relaxation times in a transgenic mouse model of Alzheimer's disease , 2006, Neurobiology of Disease.

[13]  W. D. Ehmann,et al.  Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer's disease: possible relation to oxidative stress , 1996, Journal of the Neurological Sciences.

[14]  Antonio Lanzirotti,et al.  Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer's disease. , 2006, Journal of structural biology.

[15]  Jaladhar Neelavalli,et al.  Clinical applications of neuroimaging with susceptibility‐weighted imaging , 2005, Journal of magnetic resonance imaging : JMRI.

[16]  A Van der Linden,et al.  Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer's disease , 2005, Magnetic resonance in medicine.

[17]  T. Montine,et al.  Correlation of proton transverse relaxation rates (R2) with iron concentrations in postmortem brain tissue from alzheimer's disease patients , 2007, Magnetic resonance in medicine.

[18]  E. Haacke,et al.  Imaging iron stores in the brain using magnetic resonance imaging. , 2005, Magnetic resonance imaging.

[19]  Yu-Chung N. Cheng,et al.  Susceptibility weighted imaging (SWI) , 2004, Zeitschrift fur medizinische Physik.

[20]  J. D. Robertson,et al.  Copper, iron and zinc in Alzheimer's disease senile plaques , 1998, Journal of the Neurological Sciences.