Temperature and voltage dependence C–V and G/ω–V characteristics in Au/n-type GaAs metal–semiconductor structures and the source of negative capacitance
暂无分享,去创建一个
[1] D. E. Yıldız,et al. Electrical characteristics of atomic layer deposited Au/Ti/HfO2/n-GaAs MIS diodes in the wide temperature range , 2020, Journal of Materials Science: Materials in Electronics.
[2] A. Slaoui,et al. EFFECT OF POTASSIUM CYANIDE ETCHING ON STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF Cu2ZnSnS4 THIN FILMS DEPOSITED BY A MODIFIED SPRAY PROCESS , 2019, Surface Review and Letters.
[3] A. Turut,et al. THE CURRENT–VOLTAGE CHARACTERISTICS OVER THE MEASUREMENT TEMPERATURE OF 60–400 K IN THE Au/Ti/n-GaAs CONTACTS WITH HIGH DIELECTRIC HfO2 INTERFACIAL LAYER , 2019, Surface Review and Letters.
[4] S. Mantl,et al. Transient negative capacitance and charge trapping in FDSOI MOSFETs with ferroelectric HfYOX , 2019, Solid-State Electronics.
[5] Sh. M. Hasanli,et al. Dependence of an electric capacitance on the constant voltage C = f(U) in pure bentonite, composites and semiconductors , 2019, Applied Physics A.
[6] Ş. Karataş. Frequency and voltage dependent electrical and dielectric properties of Ag/nGO doped PVA/p-Si sandwich structure at room temperature , 2019, Journal of Sandwich Structures & Materials.
[7] F. Yakuphanoglu,et al. Voltage and frequency dependence of negative capacitance behavior in a Graphene-TiO2 nanocomposite photoanode based on quantum dot sensitized solar cells , 2019, Optik.
[8] Sayeef Salahuddin,et al. Negative Capacitance Transistors , 2018, Proceedings of the IEEE.
[9] A. Karabulut. Barrier height modification in Au/Ti/n-GaAs devices with a HfO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox { , 2019, Bulletin of Materials Science.
[10] A. Türüt,et al. Electrical characteristics of Au/Ti/HfO2/n-GaAs metal-insulator-semiconductor structures with high-k interfacial layer , 2018 .
[11] F. Yakuphanoglu,et al. Graphene-TiO2 Nanocomposite Photoanode Based on Quantum Dot Solar Cells , 2017 .
[12] G. Eisenstein,et al. Negative capacitance in optically sensitive metal-insulator-semiconductor-metal structures , 2016 .
[13] G. Tröster,et al. Metal oxide semiconductor thin-film transistors for flexible electronics , 2016 .
[14] L. Dehimi,et al. Investigation on the non-ideal behaviour of Au/n-InP Schottky diodes by the simulation of I–V–T and C–V–T characteristics , 2016 .
[15] K. Asokan,et al. Frequency dependent negative capacitance effect and dielectric properties of swift heavy ion irradiated Ni/oxide/n-GaAs Schottky diode , 2016 .
[16] Y. Al-Turki,et al. Efficiency enhancement and transient photocapacitance characteristics of the silicon solar cell by graphene oxide , 2015 .
[17] A. Gümüş,et al. The source of negative capacitance and anomalous peak in the forward bias capacitance-voltage in Cr/p-si Schottky barrier diodes (SBDs) , 2015 .
[18] N. Biyikli,et al. Capacitance-conductance-current-voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures , 2015 .
[19] Ş. Karataş,et al. The current–voltage and capacitance–voltage characteristics at high temperatures of Au Schottky contact to n-type GaAs , 2014 .
[20] A. Turut,et al. The origin of negative capacitance in Au/n-GaAs Schottky barrier diodes (SBDs) prepared by photolithography technique in the wide frequency range , 2013 .
[21] A. Türüt,et al. Temperature dependent negative capacitance behavior of Al/rhodamine-101/n-GaAs Schottky barrier diodes and Rs effects on the C–V and G/ω–V characteristics , 2012 .
[22] S. Özçelik,et al. Frequency and voltage dependence of negative capacitance in Au/SiO2/n-GaAs structures , 2012 .
[23] H. Uslu,et al. The origin of anomalous peak and negative capacitance in the forward bias capacitance-voltage characteristics of Au/PVA/n-Si structures , 2011 .
[24] A. T. Kalghatgi,et al. Negative differential capacitance in n-GaN/p-Si heterojunctions , 2011 .
[25] E. Ozbay,et al. Temperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AlN/GaN heterostructures , 2010 .
[26] Ganggang Zhang,et al. Negative capacitance in light-emitting devices , 2009 .
[27] Ş. Karataş. Studies on electrical and the dielectric properties in MS structures , 2008 .
[28] G. Liu,et al. Low-frequency negative capacitance in La0.8Sr0.2MnO3∕Nb-doped SrTiO3 heterojunction , 2008 .
[29] Ş. Karataş,et al. The determination of electronic and interface state density distributions of Au/n-type GaAs Schottky barrier diodes , 2006 .
[30] M. Buchanan,et al. Negative capacitance of GaAs homojunction far-infrared detectors , 1999 .
[31] M. Amrani,et al. Modelization and characterization of Au/InSb/InP Schottky systems as a function of temperature , 1998 .
[32] H.C.Liu,et al. Negative capacitance effect in semiconductor devices , 1998, cond-mat/9806145.
[33] B. Jones,et al. Negative capacitance effects in semiconductor diodes , 1998 .
[34] C. Champness,et al. Anomalous inductive effect in selenium Schottky diodes , 1990 .
[35] W. A. Hill,et al. A single-frequency approximation for interface-state density determination , 1980 .
[36] E. H. Nicollian,et al. The si-sio, interface – electrical properties as determined by the metal-insulator-silicon conductance technique , 1967 .