Data fusion for high spatial resolution LAI estimation

Leaf Area Index (LAI) is a critical variable for forest management. It is difficult to obtain accurate LAI estimations of high spatial resolution over large areas. Local estimations can be obtained from in situ field measurements. Extrapolation of local measurements is prone to error. Remote sensing LAI estimation products, such as the one provided by MODIS are of very low resolution and subject to criticism in recent validation works. Forest management requires increasingly high resolution estimations of LAI. We propose a data fusion process for high spatial resolution estimation of the LAI over a large area, combining several heterogeneous information sources: field sampled data, elevation data and remote sensing data. The process makes use of spatial interpolation techniques. We follow a hybrid validation approach that combines the conventional prediction error measures with a spatial validation based on image segmentation. We obtain encouraging results of this information fusion process on data from a forest area in the north of Portugal.

[1]  Y. V. Venkatesh,et al.  A knowledge-based neural network for fusing edge maps of multi-sensor images , 2001, Inf. Fusion.

[2]  Steven E. Franklin,et al.  Estimation of forest Leaf Area Index using remote sensing and GIS data for modelling net primary production , 1997 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  P. Kitanidis Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis , 1986 .

[5]  Edzer J. Pebesma,et al.  Multivariable geostatistics in S: the gstat package , 2004, Comput. Geosci..

[6]  Michael F. Jasinski,et al.  Effective Interpolation of Incomplete Satellite-Derived Leaf-Area Index Time Series for the Continental United States , 2009 .

[7]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[8]  R. Christensen Linear Models for Multivariate, Time Series, and Spatial Data , 1997 .

[9]  Cristina Milesi,et al.  User's Guide GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm , 2003 .

[10]  R. Lark,et al.  Geostatistics for Environmental Scientists , 2001 .

[11]  Yun Shi,et al.  Evaluation of MODIS Land Cover and LAI Products in Cropland of North China Plain Using In Situ Measurements and Landsat TM Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Xavier Pons,et al.  A simple radiometric correction model to improve automatic mapping of vegetation from multispectral satellite data , 1994 .

[13]  Yu Zhang,et al.  Prototyping of MISR LAI and FPAR algorithm with POLDER data over Africa , 2000, IEEE Trans. Geosci. Remote. Sens..

[14]  Ben Bond-Lamberty,et al.  Reimplementation of the Biome-BGC model to simulate successional change. , 2005, Tree physiology.

[15]  W. H. Neill,et al.  The Effect of Controlled Soil Sulfur Concentration on Growth and Survival of Litopenaeus vannamei , 2007 .

[16]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[17]  Belur V. Dasarathy,et al.  Urban remote sensing using multiple data sets: Past, present, and future , 2005, Inf. Fusion.

[18]  Ranga B. Myneni,et al.  Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Hans Wackernagel,et al.  Multivariate Geostatistics: An Introduction with Applications , 1996 .

[20]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[21]  Manfred Deistler,et al.  Linear Models for Multivariate Time Series , 2006 .

[22]  P. Sellers Canopy reflectance, photosynthesis and transpiration , 1985 .

[23]  Lorenzo Bruzzone,et al.  Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote-sensing images , 2002, Inf. Fusion.

[24]  R. Olea Geostatistics for Natural Resources Evaluation By Pierre Goovaerts, Oxford University Press, Applied Geostatistics Series, 1997, 483 p., hardcover, $65 (U.S.), ISBN 0-19-511538-4 , 1999 .

[25]  S. Running,et al.  FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. , 1991, Tree physiology.

[26]  D. Kelker,et al.  Ellipsoid estimation in coal reflectance anisotropy , 1997 .

[27]  P. Guttorp,et al.  A space-time analysis of ground-level ozone data , 1994 .

[28]  D. Myers,et al.  Problems in space-time kriging of geohydrological data , 1990 .

[29]  Domingos Lopes,et al.  Accuracy of remote sensing data versus other sources of information for estimating net primary production in Eucalyptus globulus Labill. and Pinus pinaster Ait. ecosystems in Portugal , 2009 .

[30]  Sönke Müller,et al.  A framework for GIS and imagery data fusion in support of cartographic updating , 2005, Inf. Fusion.

[31]  Ramakrishna R. Nemani,et al.  Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation , 1989 .

[32]  A. Molińska,et al.  ELLIPTICAL ANISOTROPY IN PRACTICE — A STUDY OF AIR MONITORING DATA , 1996 .

[33]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[34]  Margaret Kalacska,et al.  Estimating leaf area index from satellite imagery using Bayesian networks , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Yu Zhang,et al.  Prototyping of MODIS LAI and FPAR algorithm with LASUR and LANDSAT data , 2000, IEEE Trans. Geosci. Remote. Sens..

[36]  R. Reese Geostatistics for Environmental Scientists , 2001 .

[37]  Lorenzo Bruzzone,et al.  Image fusion techniques for remote sensing applications , 2002, Inf. Fusion.

[38]  F. J. Pierce,et al.  Map Quality for Site‐Specific Fertility Management , 2001 .

[39]  D. Lopes,et al.  Estimating net primary production in 'Eucalyptus globulus' and 'Pinus pinaster' ecosystems in Portugal , 2005 .

[40]  R. Bilonick An Introduction to Applied Geostatistics , 1989 .

[41]  S. Basu,et al.  Analysis of Spatial Autocorrelation in House Prices , 1998 .

[42]  J. Etherington,et al.  Physiological Plant Ecology. , 1977 .

[43]  Tomislav Hengl,et al.  A Practical Guide to Geostatistical Mapping , 2009 .

[44]  B. Minasny,et al.  Spatial prediction of soil properties using EBLUP with the Matérn covariance function , 2007 .

[45]  G. Asrar,et al.  Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat1 , 1984 .

[46]  A. Goldberger Best Linear Unbiased Prediction in the Generalized Linear Regression Model , 1962 .

[47]  Hui Lin,et al.  Monitoring Sugarcane Growth Using ENVISAT ASAR Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[49]  Uncertainty Estimation for Resource Assessment—An Application to Coal , 2000 .

[50]  Alan E. Gelfand,et al.  Bayesian Modeling and Inference for Geometrically Anisotropic Spatial Data , 1999 .

[51]  R. Fensholt,et al.  Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements , 2004 .

[52]  W. Larcher Physiological Plant Ecology , 1977 .