LDA*: A Robust and Large-scale Topic Modeling System
暂无分享,去创建一个
Bin Cui | Ce Zhang | Yingxia Shao | Lele Yu
[1] Eric P. Xing,et al. MedLDA: maximum margin supervised topic models , 2012, J. Mach. Learn. Res..
[2] Jiawei Jiang,et al. Heterogeneity-aware Distributed Parameter Servers , 2017, SIGMOD Conference.
[3] Prasoon Goyal,et al. Probabilistic Databases , 2009, Encyclopedia of Database Systems.
[4] Yee Whye Teh,et al. Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex , 2013, NIPS.
[5] Seunghak Lee,et al. More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server , 2013, NIPS.
[6] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[7] Max Welling,et al. Distributed Inference for Latent Dirichlet Allocation , 2007, NIPS.
[8] Max Welling,et al. Fast collapsed gibbs sampling for latent dirichlet allocation , 2008, KDD.
[9] Tie-Yan Liu,et al. LightLDA: Big Topic Models on Modest Computer Clusters , 2014, WWW.
[10] Fabio Crestani,et al. Building user profiles from topic models for personalised search , 2013, CIKM.
[11] Ce Zhang,et al. DeepDive: A Data Management System for Automatic Knowledge Base Construction , 2015 .
[12] V. Climenhaga. Markov chains and mixing times , 2013 .
[13] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[14] Alexander J. Smola,et al. Scaling Distributed Machine Learning with the Parameter Server , 2014, OSDI.
[15] Zhiyuan Liu,et al. PLDA+: Parallel latent dirichlet allocation with data placement and pipeline processing , 2011, TIST.
[16] Inderjit S. Dhillon,et al. A Scalable Asynchronous Distributed Algorithm for Topic Modeling , 2014, WWW.
[17] Yaoliang Yu,et al. Petuum: A New Platform for Distributed Machine Learning on Big Data , 2013, IEEE Transactions on Big Data.
[18] Alastair J. Walker,et al. An Efficient Method for Generating Discrete Random Variables with General Distributions , 1977, TOMS.
[19] Yee Whye Teh,et al. A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation , 2006, NIPS.
[20] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[21] Alexander J. Smola,et al. An architecture for parallel topic models , 2010, Proc. VLDB Endow..
[22] James R. Foulds,et al. Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation , 2013, KDD.
[23] Alexander J. Smola,et al. Reducing the sampling complexity of topic models , 2014, KDD.
[24] Edward Y. Chang,et al. PLDA: Parallel Latent Dirichlet Allocation for Large-Scale Applications , 2009, AAIM.
[25] Jie Jiang,et al. Angel: a new large-scale machine learning system , 2018 .
[26] Wenguang Chen,et al. WarpLDA: a Cache Efficient O(1) Algorithm for Latent Dirichlet Allocation , 2015, Proc. VLDB Endow..
[27] Yee Whye Teh,et al. On Smoothing and Inference for Topic Models , 2009, UAI.
[28] Jeffrey Dean,et al. Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.
[29] Andrew McCallum,et al. Efficient methods for topic model inference on streaming document collections , 2009, KDD.