Phase Retrieval from 1D Fourier Measurements: Convexity, Uniqueness, and Algorithms

This paper considers phase retrieval from the magnitude of one-dimensional over-sampled Fourier measurements, a classical problem that has challenged researchers in various fields of science and engineering. We show that an optimal vector in a least-squares sense can be found by solving a convex problem, thus establishing a hidden convexity in Fourier phase retrieval. We then show that the standard semidefinite relaxation approach yields the optimal cost function value (albeit not necessarily an optimal solution). A method is then derived to retrieve an optimal minimum phase solution in polynomial time. Using these results, a new measuring technique is proposed which guarantees uniqueness of the solution, along with an efficient algorithm that can solve large-scale Fourier phase retrieval problems with uniqueness and optimality guarantees.

[1]  W. Wirtinger Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen , 1927 .

[2]  D. Gabor A New Microscopic Principle , 1948, Nature.

[3]  A. Walther The Question of Phase Retrieval in Optics , 1963 .

[4]  EDWARD M. HOFSTETTER,et al.  Construction of time-limited functions with specified autocorrelation functions , 1964, IEEE Trans. Inf. Theory.

[5]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[6]  M. Kreĭn,et al.  The Markov Moment Problem and Extremal Problems , 1977 .

[7]  J R Fienup,et al.  Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.

[8]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[9]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[10]  J. Diels,et al.  Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy. , 1985, Applied optics.

[11]  W. F. Ames,et al.  Phase retrieval and zero crossings (Mathematical methods in image reconstruction) , 1990 .

[12]  Robert W. Harrison,et al.  Phase problem in crystallography , 1993 .

[13]  Stephen P. Boyd,et al.  FIR filter design via semidefinite programming and spectral factorization , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[14]  Holly P. Hirst,et al.  Bounding the Roots of Polynomials , 1997 .

[15]  Andrew E. Yagle,et al.  One- and two-dimensional minimum and nonminimum phase retrieval by solving linear systems of equations , 1999, IEEE Trans. Signal Process..

[16]  Stephen P. Boyd,et al.  FIR Filter Design via Spectral Factorization and Convex Optimization , 1999 .

[17]  Petre Stoica,et al.  On the parameterization of positive real sequences and MA parameter estimation , 2001, IEEE Trans. Signal Process..

[18]  Ali H. Sayed,et al.  A survey of spectral factorization methods , 2001, Numer. Linear Algebra Appl..

[19]  øöö Blockinø Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization , 2002 .

[20]  Lieven Vandenberghe,et al.  Convex optimization problems involving finite autocorrelation sequences , 2002, Math. Program..

[21]  Nikos D. Sidiropoulos,et al.  Far-Field Multicast Beamforming for Uniform Linear Antenna Arrays , 2007, IEEE Transactions on Signal Processing.

[22]  B. Dumitrescu Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .

[23]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[24]  Zhi-Quan Luo,et al.  Semidefinite Relaxation of Quadratic Optimization Problems , 2010, IEEE Signal Processing Magazine.

[25]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[26]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[27]  Yonina C. Eldar,et al.  Sparsity Based Sub-wavelength Imaging with Partially Incoherent Light via Quadratic Compressed Sensing References and Links , 2022 .

[28]  Martin Vetterli,et al.  Sparse spectral factorization: Unicity and reconstruction algorithms , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[29]  Babak Hassibi,et al.  Recovery of sparse 1-D signals from the magnitudes of their Fourier transform , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[30]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[31]  Yonina C. Eldar,et al.  Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms , 2012, SIAM J. Optim..

[32]  Xiaodong Li,et al.  Phase Retrieval from Coded Diffraction Patterns , 2013, 1310.3240.

[33]  V. Elser Direct phasing of nanocrystal diffraction. , 2013, Acta crystallographica. Section A, Foundations of crystallography.

[34]  Yonina C. Eldar,et al.  On conditions for uniqueness in sparse phase retrieval , 2013, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[35]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[36]  Nikos D. Sidiropoulos,et al.  Hidden Convexity in QCQP with Toeplitz-Hermitian Quadratics , 2015, IEEE Signal Processing Letters.

[37]  Euhanna Ghadimi,et al.  Optimal Parameter Selection for the Alternating Direction Method of Multipliers (ADMM): Quadratic Problems , 2013, IEEE Transactions on Automatic Control.

[38]  Yonina C. Eldar,et al.  Sparse Phase Retrieval from Short-Time Fourier Measurements , 2014, IEEE Signal Processing Letters.

[39]  Yonina C. Eldar,et al.  Phase Retrieval: An Overview of Recent Developments , 2015, ArXiv.

[40]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[41]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[42]  G. Plonka,et al.  Ambiguities in One-Dimensional Discrete Phase Retrieval from Fourier Magnitudes , 2015 .

[43]  Yonina C. Eldar,et al.  Recovering signals from the Short-Time Fourier Transform magnitude , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[44]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[45]  Yonina C. Eldar,et al.  On convexity and identifiability in 1-D Fourier phase retrieval , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[46]  Nikos D. Sidiropoulos,et al.  Phase Retrieval Using Feasible Point Pursuit: Algorithms and Cramér–Rao Bound , 2015, IEEE Transactions on Signal Processing.

[47]  Stephen P. Boyd,et al.  Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM , 2014, IEEE Transactions on Automatic Control.