Semi-supervised dictionary learning with label propagation for image classification

Sparse coding and supervised dictionary learning have rapidly developed in recent years, and achieved impressive performance in image classification. However, there is usually a limited number of labeled training samples and a huge amount of unlabeled data in practical image classification, which degrades the discrimination of the learned dictionary. How to effectively utilize unlabeled training data and explore the information hidden in unlabeled data has drawn much attention of researchers. In this paper, we propose a novel discriminative semi-supervised dictionary learning method using label propagation (SSD-LP). Specifically, we utilize a label propagation algorithm based on class-specific reconstruction errors to accurately estimate the identities of unlabeled training samples, and develop an algorithm for optimizing the discriminative dictionary and discriminative coding vectors simultaneously. Extensive experiments on face recognition, digit recognition, and texture classification demonstrate the effectiveness of the proposed method.

[1]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[2]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[3]  M. Elad,et al.  Improving the k-svd facial image compression using a linear deblocking method , 2008, 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel.

[4]  David Zhang,et al.  Fisher Discrimination Dictionary Learning for sparse representation , 2011, 2011 International Conference on Computer Vision.

[5]  Xiaoqin Zhang,et al.  Semi-Supervised Dictionary Learning via Structural Sparse Preserving , 2016, AAAI.

[6]  Thomas S. Huang,et al.  Supervised translation-invariant sparse coding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Lei Zhang,et al.  Support Vector Guided Dictionary Learning , 2014, ECCV.

[8]  Michael Elad,et al.  Compression of facial images using the K-SVD algorithm , 2008, J. Vis. Commun. Image Represent..

[9]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Stan Z. Li,et al.  Adaptively Unified Semi-Supervised Dictionary Learning with Active Points , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[11]  Baoxin Li,et al.  Discriminative K-SVD for dictionary learning in face recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[13]  Meng Jian,et al.  Semi-Supervised Bi-Dictionary Learning for Image Classification With Smooth Representation-Based Label Propagation , 2016, IEEE Transactions on Multimedia.

[14]  Rong Jin,et al.  Correlated Label Propagation with Application to Multi-label Learning , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Tae-Kyun Kim,et al.  Set-based label propagation of face images , 2012, 2012 19th IEEE International Conference on Image Processing.

[16]  Larry S. Davis,et al.  Online Semi-Supervised Discriminative Dictionary Learning for Sparse Representation , 2012, ACCV.

[17]  Luc Van Gool,et al.  Comment on "Ensemble Projection for Semi-supervised Image Classification" , 2014, ArXiv.

[18]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[19]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[20]  Andrew Zisserman,et al.  Image Classification using Random Forests and Ferns , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[21]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[22]  Michael Elad,et al.  On the Role of Sparse and Redundant Representations in Image Processing , 2010, Proceedings of the IEEE.

[23]  Bo Wang,et al.  Dynamic Label Propagation for Semi-supervised Multi-class Multi-label Classification , 2013, ICCV.

[24]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[25]  Larry S. Davis,et al.  Learning a discriminative dictionary for sparse coding via label consistent K-SVD , 2011, CVPR 2011.

[26]  Jianping Fan,et al.  Learning inter-related visual dictionary for object recognition , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Mahdieh Soleymani Baghshah,et al.  PSSDL: Probabilistic Semi-supervised Dictionary Learning , 2013, ECML/PKDD.

[28]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Jun Guo,et al.  Extended SRC: Undersampled Face Recognition via Intraclass Variant Dictionary , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Luc Van Gool,et al.  Latent Dictionary Learning for Sparse Representation Based Classification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Hong Cheng,et al.  Sparsity induced similarity measure for label propagation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[32]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[33]  Rama Chellappa,et al.  Learning discriminative dictionaries with partially labeled data , 2012, 2012 19th IEEE International Conference on Image Processing.

[34]  Lei Zhang,et al.  Metaface learning for sparse representation based face recognition , 2010, 2010 IEEE International Conference on Image Processing.

[35]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[37]  Guillermo Sapiro,et al.  Discriminative learned dictionaries for local image analysis , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[40]  Luc Van Gool,et al.  Ensemble Projection for Semi-supervised Image Classification , 2013, 2013 IEEE International Conference on Computer Vision.

[41]  Rama Chellappa,et al.  Dictionary-Based Face Recognition from Video , 2012, ECCV.

[42]  Wei Liu,et al.  Multi-Modal Curriculum Learning for Semi-Supervised Image Classification , 2016, IEEE Transactions on Image Processing.

[43]  Ronald Rosenfeld,et al.  Semi-supervised learning with graphs , 2005 .

[44]  Feiping Nie,et al.  Semi-supervised Robust Dictionary Learning via Efficient l-Norms Minimization , 2013, 2013 IEEE International Conference on Computer Vision.

[45]  A. Martínez,et al.  The AR face databasae , 1998 .

[46]  Svetha Venkatesh,et al.  Joint learning and dictionary construction for pattern recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Jonathan J. Hull,et al.  A Database for Handwritten Text Recognition Research , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Yi Liu,et al.  SemiBoost: Boosting for Semi-Supervised Learning , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.