Sets of Frequency Hopping Sequences: Bounds and Optimal Constructions

Frequency hopping spread spectrum and direct sequence spread spectrum are two main spread coding technologies in communication systems. Frequency hopping sequences are needed in frequency hopping code-division multiple-access (FH-CDMA) systems. In this paper, four algebraic and a combinatorial constructions of optimal sets of frequency hopping sequences with new parameters are presented, and a number of bounds on sets of frequency hopping sequences are described.

[1]  Cunsheng Ding,et al.  Complex Codebooks From Combinatorial Designs , 2006, IEEE Transactions on Information Theory.

[2]  A. J. Han Vinck,et al.  On the Constructions of Constant-Weight Codes , 1998, IEEE Trans. Inf. Theory.

[3]  Gennian Ge,et al.  Further combinatorial constructions for optimal frequency-hopping sequences , 2006, J. Comb. Theory, Ser. A.

[4]  G. Myerson Period polynomials and Gauss sums for finite fields , 1981 .

[5]  Ryoh Fuji-Hara,et al.  Frequency Hopping Sequences with Optimal Auto-and Cross-Correlation Properties and Related Codes , 2006 .

[6]  Mattias Svanström A lower bound for ternary constant weight codes , 1997, IEEE Trans. Inf. Theory.

[7]  Patric R. J. Östergård On Binary/Ternary Error-Correcting Codes with Minimum Distance 4 , 1999, AAECC.

[8]  Daiyuan Peng,et al.  Lower Bounds on the Hamming Auto- and Cross Correlations of Frequency-Hopping Sequences , 2004, IEEE Trans. Inf. Theory.

[9]  Cunsheng Ding,et al.  Algebraic Constructions of Optimal Frequency-Hopping Sequences , 2007, IEEE Transactions on Information Theory.

[10]  Robert A. Scholtz,et al.  The Spread Spectrum Concept , 1977, IEEE Trans. Commun..

[11]  Benny Sudakov A Note on Odd Cycle-Complete Graph Ramsey Numbers , 2002, Electron. J. Comb..

[12]  T. Storer Cyclotomy and difference sets , 1967 .

[13]  John J. Komo,et al.  Maximal Length Sequences for Frequency Hopping , 1990, IEEE J. Sel. Areas Commun..

[14]  Ying Miao,et al.  Optimal frequency hopping sequences: a combinatorial approach , 2004, IEEE Transactions on Information Theory.

[15]  Tuvi Etzion,et al.  Optimal constant weight codes over Zk and generalized designs , 1997, Discret. Math..

[16]  Patric R. J. Östergård,et al.  Ternary Constant Weight Codes , 2002, Electron. J. Comb..

[17]  Cunsheng Ding,et al.  Sets of Optimal Frequency-Hopping Sequences , 2008, IEEE Transactions on Information Theory.

[18]  Mattias Svanström A Class of Perfect Ternary Constant-Weight Codes , 1999, Des. Codes Cryptogr..

[19]  Torleiv Kløve,et al.  On the Svanström bound for ternary constant-weight codes , 2001, IEEE Trans. Inf. Theory.

[20]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[21]  Abraham Lempel,et al.  Families of sequences with optimal Hamming-correlation properties , 1974, IEEE Trans. Inf. Theory.

[22]  Mohammad Umar Siddiqi,et al.  Optimal Large Linear Complexity Frequency Hopping Patterns Derived from Polynomial Residue Class Rings , 1998, IEEE Trans. Inf. Theory.

[23]  Yuan Zhou Introduction to Coding Theory , 2010 .

[24]  Chaoping Xing,et al.  Coding Theory: A First Course , 2004 .

[25]  P. Vijay Kumar,et al.  Frequency-hopping code sequence designs having large linear span , 1988, IEEE Trans. Inf. Theory.

[26]  Charles J. Colbourn,et al.  Optimal frequency-hopping sequences via cyclotomy , 2005, IEEE Transactions on Information Theory.

[27]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .