Practical Ship Hydrodynamics

Introduction Overview of problems and approaches Model test and similarity laws Full scale tests Numerical approaches (Computational Fluid Dynamics) Basic equations, Basic techniques Applications. Propeller Flows: Propeller geometry and other basics, Propeller curves Numerical methods for propeller design Lifting line theory Lifting surface theory BEM for propellers Field methods Cavitation Experimental approach Propeller design procedure. Resistance and propulsion: Resistance and propulsion concepts Interaction between ship and propeller Decomposition of resistance Experimental approach Towing tanks and experimental set up Resistance test Method ITTC 1957 Method of Hughes-Prohaska Propulsion test Additional resistance under service conditions Simple design approaches CFD approaches for steady flow Wave resistance computations Viscous flow computations Problems for fast and unconventional ships. Ship Seakeeping: Introduction to seakeeping Experimental approaches (model and full-scale) Waves and seaway Airy waves (harmonic waves of small amplitude) Natural seaway Wind and seaway Wave climate Numerical prediction of ship seakeeping Overview of computational methods Strip method Rankine panel methods Problems for fast and unconventional ships Further quantities in regular waves Ship responses in stationary seaway Simulation methods Long-term distributions Slamming. Manoeuvring: Simulation of manoeuvring with known coefficients Coordinate systems and definitions Body forces and manoeuvring motions Linear motion equations CFD for manoeuvring Experimental approaches Manoeuvring tests for full-scale ships in sea trials Model tests Rudders Computation of body forces Slender-body theory Influence of heel Shallow-water effect Jet thrusters Stop manoeuvres. Boundary element methods: Green function formulation Integral equations Source elements Point source Regular first-order panel Jensen panel Higher-order panel Vortex elements Dipole elements Point dipole. Numerical examples for BEM: Two-dimensional body in infinite flow Theory Numerical implementation.

[1]  Odd M. Faltinsen,et al.  Sea loads on ships and offshore structures , 1990 .

[2]  Jochim Brix MANOEUVRING TECHNICAL MANUAL , 1987 .

[3]  Lars Larsson CFD in Ship Design -Prospects and limitations , 1997 .

[4]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[5]  Hans Jürgen Bohlmann Berechnung hydrodynamischer Koeffizienten von Ubooten zur Vorhersage des Bewegungsverhaltens , 1990 .

[6]  A.J.W. Lap Diagrams for determining the resistance of single-screw ships , 1954 .

[7]  Dimitris E Nakos,et al.  Ship wave patterns and motions by a three dimensional Rankine panel method , 1990 .

[8]  J Allison,et al.  MARINE WATERJET PROPULSION , 1993 .

[9]  John L Hess,et al.  CALCULATION OF NON-LIFTING POTENTIAL FLOW ABOUT ARBITRARY THREE-DIMENSIONAL BODIES , 1962 .

[10]  H. Schlichting Boundary Layer Theory , 1955 .

[11]  Bertram,et al.  RECENT APPLICATIONS OF COMPUTATIONAL FLUID DYNAMICS , 1994 .

[12]  Jong Jae Lee,et al.  A SURFACE PANEL METHOD FOR THE HYDRODYNAMIC ANALYSIS OF DUCTED PROPELLERS , 1987 .

[13]  J E Kerwin,et al.  PREDICTION OF STEADY AND UNSTEADY MARINE PROPELLER PERFORMANCE BY NUMERICAL LIFTING-SURFACE THEORY , 1978 .

[14]  Lars Larsson,et al.  Ship resistance and flow computations , 1996 .

[15]  M. Kashiwagi Numerical Seakeeping Calculations Based on the Slender Ship Theory , 1997 .

[16]  S. A. Kinnas Theory and numerical methods for the hydrodynamic analysis of marine propulsors , 1996 .

[17]  Poul Andersen,et al.  Hydrodynamics of Ship Propellers , 1993 .

[18]  Alexander Korobkin,et al.  Water impact problems in ship hydrodynamics , 1996 .

[19]  Hans Thieme Zur Formgebung von Schiffsrudern , 1962 .

[20]  Luigi Morino,et al.  Steady and Oscillatory Subsonic and Supersonic Aerodynamics around Complex Configurations , 1975 .

[21]  R B Chapman FREE-SURFACE EFFECTS FOR YAWED SURFACE-PIERCING PLATES , 1976 .

[22]  Yusong Cao,et al.  Three‐dimensional desingularized boundary integral methods for potential problems , 1991 .

[23]  Carl-Erik Janson Potential Flow Panel Methods for the Calculation of Free-surface Flows with Lift , 1997 .

[24]  G J Goodrich,et al.  WIND TUNNEL INVESTIGATION OF SEMI-BALANCED SHIP SKEG RUDDERS , 1979 .

[25]  Joe F. Thompson,et al.  Numerical grid generation , 1985 .

[26]  Eric Tupper Introduction to Naval Architecture , 1996 .

[27]  Lars Larsson Failures, Fantasies and Feats in the Theoretical/Numerical Prediction of Ship Performance , 1998 .

[28]  T.J.C. Van Terwisga Waterjet-Hull interaction , 1996 .

[29]  W. H. Auf’m Keller EXTENDED DIAGRAMS FOR DETERMINING THE RESISTANCE AND REQUIRED POWER FOR SINGLE SCREW SHIPS , 1973 .

[30]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[31]  I. H. Abbott,et al.  Theory of Wing Sections , 1959 .

[32]  J. Hess Panel Methods in Computational Fluid Dynamics , 1990 .

[33]  Hoyte Christiaan Raven,et al.  A solution method for the nonlinear wave resistance problem , 1996 .

[34]  Leo F. Fehlner,et al.  Free-Stream Characteristics of A Family of Low-Aspect-Ratio, All-Movable Control Surfaces for Application to Ship Design , 1958 .

[35]  H. Schneekluth,et al.  Ship Design for Efficiency and Economy , 1987 .

[36]  L. Morino,et al.  Subsonic Potential Aerodynamics for Complex Configurations: A General Theory , 1974 .

[37]  Kuniji Kose,et al.  On a New Mathematical Model of Manoeuvring Motions of a Ship , 1979 .

[38]  Edward V. Lewis,et al.  Principles of naval architecture , 1988 .

[39]  Nils Salvesen,et al.  SHIP MOTIONS AND SEA LOADS , 1970 .

[40]  S. Chuang Experiments on Slamming of Wedge-Shaped Bodies , 1967 .

[41]  Susan L. Bales,et al.  Standardized wave and wind environments for NATO Operational Areas , 1981 .

[42]  Bertram,et al.  A HIGHER-ORDER PANEL METHOD FOR 3-D FREE SURFACE FLOWS , 1995 .

[43]  T. Taylor,et al.  Computational methods for fluid flow , 1982 .

[44]  H Soding A METHOD FOR ACCURATE FORCE CALCULATIONS IN POTENTIAL FLOW , 1993 .

[45]  W.-C. Lin,et al.  Predicting Ship Hydrodynamic Performance in Today's World , 1998 .

[46]  J. N. Newman The Theory of Ship Motions , 1979 .

[47]  A. Kracht Kavitation an Rudern , 1988 .

[48]  D. Clarke,et al.  The Application of Manoeuvring Criteria in Hull Design Using Linear Theory , 1982 .