Observer-based control for absolute orientation estimation of a five-link walking biped robot

Reference trajectories for a cyclic walking gait of a five-link biped without feet are designed by optimization. These reference trajectories are polynomial functions using the absolute orientation of the virtual stance leg which is quite difficult to measure. Then a high gain observer coupled with a nonlinear control law is designed to estimate this absolute orientation of the virtual stance leg

[1]  A. Isidori Nonlinear Control Systems , 1985 .

[2]  Bernard Brogliato,et al.  Modeling, stability and control of biped robots - a general framework , 2004, Autom..

[3]  A. V. Lensky,et al.  Dynamic Walking of a Vehicle With Two Telescopic Legs Controlled by Two Drives , 1994, Int. J. Robotics Res..

[4]  Yannick Aoustin,et al.  Optimal reference trajectories for walking and running of a biped robot , 2001, Robotica.

[5]  Franck Plestan,et al.  Stable walking of a 7-DOF biped robot , 2003, IEEE Trans. Robotics Autom..

[6]  L. Menini,et al.  A local observer for linearly observable nonlinear mechanical systems subject to impacts , 2003, Proceedings of the 2003 American Control Conference, 2003..

[7]  Giuseppe Oriolo,et al.  A biped locomotion strategy for the quadruped robot Sony ERS-210 , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[8]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[9]  Fumio Kanehiro,et al.  Humanoid robot HRP-2 , 2008, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[10]  Gabriel Abba,et al.  Energy-Minimized Gait for a Biped Robot , 1995, AMS.

[11]  Yannick Aoustin,et al.  Optimal Reference Motions for Walking of a Biped Robot , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[12]  J. Gauthier,et al.  Observability for any of a class of nonlinear systems , 1981 .

[13]  Hassan Hammouri,et al.  A high gain observer for a class of uniformly observable systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[14]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[15]  Franck Plestan,et al.  Observer-based control of a biped robot , 2004, Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891).

[16]  A. Tornambe,et al.  Reduced-order observers for the velocity estimation of non-linear mechanical systems subject to non-smooth impacts , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[17]  Chee-Meng Chew,et al.  Virtual Model Control: An Intuitive Approach for Bipedal Locomotion , 2001, Int. J. Robotics Res..

[18]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[19]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[20]  Michael A. Arbib,et al.  Topics in Mathematical System Theory , 1969 .

[21]  Leonard Barolli,et al.  Optimal trajectory generation for a prismatic joint biped robot using genetic algorithms , 2002, Robotics Auton. Syst..

[22]  Y. Aoustin,et al.  Finite time observer for absolute orientation estimation of a five-link walking biped robot , 2006, 2006 American Control Conference.

[23]  Laura Menini,et al.  Velocity observers for linear mechanical systems subject to single non-smooth impacts , 2001, Syst. Control. Lett..