Improved Lumbar Vertebral Interbody Fusion Using rhOP-1: A Comparison of Autogenous Bone Graft, Bovine Hydroxylapatite (Bio-Oss), and BMP-7 (rhOP-1) in Sheep

Study Design. After disc removal and monosegmental instrumentation of the sheep lumbar spine, interbody fusion was compared for 6 months after administration of autogenous bone graft, hydroxylapatite, or rhOP-1. Objective. To determine whether the use of rhOP-1 or hydroxylapatite would improve on the intercorporal fusion achieved by autologous bone grafting. Summary of Background Data. Spinal fusion often fails or shows loss of correction despite large-scale conventional techniques using posterior and anterior access. Also, additional operations to obtain bone grafts are required, which increase morbidity and strain for the patient, but do not always provide bone with sufficient primary stability and high osteogenic potential. Methods. Vertebral fusion quality was examined by plain radiograph at 4-week intervals, by scintigraphy at 3 and 6 months, and by computed tomography scan, magnetic resonance imaging, biomechanical testing, and histologic evaluation. Results. All examination methods demonstrated superior fusion after administration of rhOP-1, with radiologic fusion apparent at 4 months. Autologous bone grafts eventually produced bony healing in most cases, albeit of a lower quality than with rhOP-1. Hydroxylapatite use led only to the formation of a tight pseudarthrosis. Conclusions. The results indicate that rhOP-1 use is an appropriate method for improving interbody fusion in the sheep spine. In addition to offering the potential for improved bone healing, rhOP-1 use may permit less invasive surgery such as transpedicular fusion and the use of cages.

[1]  M. Blauth,et al.  [Transpedicular fusion of the thoraco-lumbar junction. Clinical, radiographic and CT results]. , 1999, Der Orthopade.

[2]  P. McAfee Interbody fusion cages in reconstructive operations on the spine. , 1999, The Journal of bone and joint surgery. American volume.

[3]  Paramore Cg The safety of OP-1 for lumbar fusion with decompression-- a canine study. , 1999 .

[4]  B. Cunningham,et al.  Osteogenic protein versus autologous interbody arthrodesis in the sheep thoracic spine. A comparative endoscopic study using the Bagby and Kuslich interbody fusion device. , 1999, Spine.

[5]  S. Boden,et al.  Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage , 1998 .

[6]  J. Wozney,et al.  Augmentation of autograft using rhBMP-2 and different carrier media in the canine spinal fusion model. , 1997, Journal of spinal disorders.

[7]  L. Claes,et al.  Are Sheep Spines a Valid Biomechanical Model for Human Spines? , 1997, Spine.

[8]  S. Boden,et al.  Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage. , 1997, Journal of spinal disorders.

[9]  S. Boden,et al.  Video‐Assisted Lateral Intertransverse Process Arthrodesis: Validation of a New Minimally Invasive Lumbar Spinal Fusion Technique in the Rabbit and Nonhuman Primate (Rhesus) Models , 1996, Spine.

[10]  R. Delamarter,et al.  Distractive Properties of a Threaded Interbody Fusion Device: An In Vivo Model , 1996, Spine.

[11]  S. Cook,et al.  Osteogenic protein-1: biology and applications. , 1996, Clinical orthopaedics and related research.

[12]  V. Goldberg,et al.  Factors Affecting Bone Graft Incorporation , 1996, Clinical orthopaedics and related research.

[13]  W. Hutton,et al.  The Use of an Osteoinductive Growth Factor for Lumbar Spinal Fusion: Part I Biolog of Spinal Fusion , 1995 .

[14]  A. Vaccaro,et al.  Internal Fixation (Pedicle Screw Fixation) for Fusions of the Lumbar Spine , 1995, Spine.

[15]  J. Katz,et al.  Lumbar Spinal Fusions: Surgical Rates, Costs, and Complications , 1995, Spine.

[16]  V. Goel,et al.  Biomechanics of Fusion and Stabilization , 1995, Spine.

[17]  D. R. Sumner,et al.  Biologic Factors Affecting Spinal Fusion and Bone Regeneration , 1995, Spine.

[18]  R. Fraser,et al.  Interbody, Posterior, and Combined Lumbar Fusions , 1995, Spine.

[19]  Marc A. Asher,et al.  Iliac Crest Bone Graft Harvest Donor Site Morbidity: A Statistical Evaluation , 1995, Spine.

[20]  Banwart Jc,et al.  Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. , 1995 .

[21]  S D Cook,et al.  Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. , 1995, The Journal of bone and joint surgery. American volume.

[22]  G. Rechtine,et al.  The Effect of Pedicle Screw/Plate Fixation on Lumbar/Lumbosacral Autogenous Bone Graft Fusions in Patients With Degenerative Disc Disease , 1995, Spine.

[23]  G. Muschler,et al.  Evaluation of Human Bone Morphogenetic Protein 2 in a Canine Spinal Fusion Model , 1994, Clinical orthopaedics and related research.

[24]  S. Cook,et al.  In Vivo Evaluation of Recombinant Human Osteogenic Protein (rhOP-1) Implants As a Bone Graft Substitute for Spinal Fusions , 1994, Spine.

[25]  M. Spector,et al.  Anorganic bovine bone and ceramic analogs of bone mineral as implants to facilitate bone regeneration. , 1994, Clinics in plastic surgery.

[26]  S. Cook,et al.  The effect of recombinant human osteogenic protein-1 on healing of large segmental bone defects. , 1994, The Journal of bone and joint surgery. American volume.

[27]  S. Cook,et al.  Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. , 1994, Clinical orthopaedics and related research.

[28]  D N Kunz,et al.  Pedicle Screw Pullout Strength: Correlation with Insertional Torque , 1993, Spine.

[29]  D. Spengler,et al.  Biomechanical analysis of three surgical approaches for lumbar burst fractures using short-segment instrumentation. , 1993, Spine.

[30]  P. McAfee,et al.  Anterior spinal fixators. A biomechanical in vitro study. , 1993, Spine.

[31]  D. Burr,et al.  Do different fluorochrome labels give equivalent histomorphometric information? , 1992, Bone.

[32]  H. Larocca,et al.  The Failed Posterior Lumbar Interbody Fusion , 1991, Spine.

[33]  V. Rosen,et al.  Recombinant human bone morphogenetic protein induces bone formation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[34]  B. Summers,et al.  Donor site pain from the ilium. A complication of lumbar spine fusion. , 1989, The Journal of bone and joint surgery. British volume.

[35]  M. Urist,et al.  Augmentation of spinal fusion with bone morphogenetic protein in dogs. , 1989, Clinical orthopaedics and related research.

[36]  L. Sjöström,et al.  Transpedicular fixation of thoracolumbar vertebral fractures. , 1988, Clinical orthopaedics and related research.

[37]  W. Dick The “Fixatuer Interne” as a Versatile Implant for Spine Surgery , 1987, Spine.

[38]  H Daniaux,et al.  [Transpedicular repositioning and spongioplasty in fractures of the vertebral bodies of the lower thoracic and lumbar spine]. , 1986, Der Unfallchirurg.

[39]  S. Perren,et al.  Xylenol orange, a fluorochrome useful in polychrome sequential labeling of calcifying tissues. , 1971, Stain technology.

[40]  S. Olerud,et al.  Triple fluorochrome labeling in bone formation and bone resorption. , 1970, The Journal of bone and joint surgery. American volume.

[41]  F. Calenbergh,et al.  Mechanical performance of the Dick internal fixator: a clinical study of 75 patients , 2004, European Spine Journal.

[42]  M. Hadley,et al.  The safety of OP-1 for lumbar fusion with decompression-- a canine study. , 1999, Neurosurgery.

[43]  M. Blauth,et al.  TRANSPEDIKULARE SPONGIOSAPLASTIK AM THORAKOLUMBALEN UBERGANG : KLINISCHE, RONTGENOLOGISCHE UND COMPUTERTOMOGRAPHISCHE ERGEBNISSE , 1999 .

[44]  M. Hofmeister,et al.  Schicksal der transpedikulären Spongiosaplastik nach Frakturversorgung , 1997 .

[45]  A. Weckbach,et al.  Einfluß der transpedikulären intercorporellen Spongiosaplastik auf den Korrekturverlust nach alleiniger dorsaler Instrumentierung thoracolumbaler Wirbelsäulenverletzungen , 1997 .

[46]  A. Reddi,et al.  Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (hOP-1, bone morphogenetic protein-7). , 1996, Growth factors.

[47]  J. Silver,et al.  The causes of failure of lumbar transpedicular spinal instrumentation and fusion , 1996, International Orthopaedics.

[48]  H. Chambers,et al.  Complications of iliac crest bone graft harvesting. , 1996, Clinical orthopaedics and related research.

[49]  M. I. Chen,et al.  1995 Volvo Award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. Part I: Biology of spinal fusion. , 1995, Spine.

[50]  T. Lindholm,et al.  Spinal fusion induced by porous hydroxyapatite blocks (HA). Experimental comparative study with HA, demineralized bone matrix and autogenous bone marrow. , 1993, Italian journal of orthopaedics and traumatology.

[51]  H. Bereiter,et al.  Erfahrungen mit Bio-Oss, einem bovinen Apatit, bei verschiedenen klinischen Indikationsbereichen , 1991 .

[52]  W. Schlickewei,et al.  Erste klinische Erfahrungen mit Bio-Oss , 1991 .

[53]  M. Chapman,et al.  Morbidity at bone graft donor sites. , 1989, Journal of orthopaedic trauma.