Reducing Spurious Diapycnal Mixing in Ocean Models

Transport algorithms of numerical ocean circulation models are frequently exhibiting truncation errors leading to spurious diapycnal mixing of water masses. This chapter discusses methods that might be useful in diagnosing spurious diapycnal mixing and describes some approaches that might be helpful for its reduction. The first one is related to the use of the Arbitrary Lagrangian Eulerian (ALE) vertical coordinate which allows the implementation of vertically moving meshes that may partly follow the isopycnals even if the basic vertical coordinate differs from isopycnal. The second approach relies on modified advection schemes with the dissipative part of the transport operators directed isopycnally. Finally the third approach deals with new efficient and stable advection algorithms of arbitrary high order based on the WENO-ADER method, which can be applied to both structured and unstructured meshes. While practical benefits of using the reviewed approaches depend on applications, there are indications that equipping present state-of-the-art ocean circulation models with them would lead to reduced spurious transformations.

[1]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[2]  Claus-Dieter Munz,et al.  A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions , 2008, J. Sci. Comput..

[3]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[4]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[5]  R. F. Warming,et al.  The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .

[6]  Jens Schröter,et al.  The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model , 2014 .

[7]  J. Schröter,et al.  Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate , 2015, Climate Dynamics.

[8]  Joseph Falcovitz,et al.  THE CONVERGENCE OF THE GRP SCHEME , 2008 .

[9]  Todd D. Ringler,et al.  Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate method in the MPAS-Ocean model , 2015 .

[10]  Julia Getzlaff,et al.  Diagnostics of diapycnal diffusion in z-level ocean models , 2008 .

[11]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[12]  Alistair Adcroft,et al.  Attribution of horizontal and vertical contributions to spurious mixing in an Arbitrary Lagrangian-Eulerian ocean model , 2017 .

[13]  Gerald Warnecke,et al.  A direct Eulerian GRP scheme for compressible fluid flows , 2006, J. Comput. Phys..

[14]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[15]  Michael Dumbser,et al.  Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons with Runge-Kutta methods , 2013, J. Comput. Phys..

[16]  James C. McWilliams,et al.  Quasi-Monotone Advection Schemes Based on Explicit Locally Adaptive Dissipation , 1998 .

[17]  Armin Iske,et al.  On the Construction of Kernel-Based Adaptive Particle Methods in Numerical Flow Simulation , 2013 .

[18]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[19]  Claus R. Goetz,et al.  Approximate solutions of generalized Riemann problems for nonlinear systems of hyperbolic conservation laws , 2015, Math. Comput..

[20]  Claus-Dieter Munz,et al.  A Discontinuous Galerkin Scheme Based on a Space–Time Expansion. I. Inviscid Compressible Flow in One Space Dimension , 2007, J. Sci. Comput..

[21]  Michael Schröder,et al.  On the difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen Sea continental shelf , 2014 .

[22]  Ryan Abernathey,et al.  Controlling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models – Insights from virtual deliberate tracer release experiments , 2012 .

[23]  Knut Klingbeil,et al.  Quantification of spurious dissipation and mixing – Discrete variance decay in a Finite-Volume framework , 2014 .

[24]  Michael Dumbser,et al.  Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers , 2013, J. Comput. Phys..

[25]  Jiequan Li,et al.  Hyperbolic balance laws: Riemann invariants and the generalized Riemann problem , 2007, Numerische Mathematik.

[26]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[27]  Michael Dumbser,et al.  Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes , 2013, 1302.3076.

[28]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem. Part 2 : application to the equations of gas dynamics , 1989 .

[29]  William C. Skamarock,et al.  Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Flux Operators for ODE-Based Time Integration , 2011 .

[30]  Gurvan Madec,et al.  z˜-Coordinate, an Arbitrary Lagrangian–Eulerian coordinate separating high and low frequency motions , 2011 .

[31]  Knut Klingbeil,et al.  Implementation of a direct nonhydrostatic pressure gradient discretisation into a layered ocean model , 2013 .

[32]  Michael Dumbser,et al.  Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement , 2015, 1504.07458.

[33]  James C. McWilliams,et al.  Correction and commentary for "Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system" by Haidvogel et al., J. Comp. Phys 227, pp 3595-3624 , 2009, J. Comput. Phys..

[34]  Tatsien Li,et al.  Global Propagation of Regular Nonlinear Hyperbolic Waves , 2002 .

[35]  Eduard Harabetian,et al.  A convergent series expansion for hyperbolic systems of conservation laws , 1986 .

[36]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[37]  D. Webb,et al.  IMPROVED ADVECTION SCHEMES FOR OCEAN MODELS , 1998 .

[38]  Henk M. Schuttelaars,et al.  Thickness-Weighted Averaging in Tidal Estuaries and the Vertical Distribution of the Eulerian Residual Transport , 2019, Journal of Physical Oceanography.

[39]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[40]  Jean-Marie Beckers,et al.  Non-uniform adaptive vertical grids in one-dimensional numerical ocean models , 2004 .

[41]  E. F. Toro,et al.  The Riemann Problem: Solvers and Numerical Fluxes , 2016 .

[42]  Qiang Wang,et al.  The Finite-volumE Sea ice–Ocean Model (FESOM2) , 2016 .

[43]  Eleuterio F. Toro,et al.  Solvers for the high-order Riemann problem for hyperbolic balance laws , 2008, J. Comput. Phys..

[44]  Joseph Falcovitz,et al.  Generalized Riemann Problems in Computational Fluid Dynamics , 2003 .

[45]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[46]  Jean-Marie Beckers,et al.  Non-uniform adaptive vertical grids for 3D numerical ocean models , 2010 .

[47]  Knut Klingbeil,et al.  Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas , 2015 .

[48]  Günther Zängl,et al.  The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and performance of the baseline version , 2013 .

[49]  Armin Iske,et al.  Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..

[50]  Laurent Debreu,et al.  The numerics of hydrostatic structured-grid coastal ocean models: state of the art and future perspectives , 2018 .

[51]  Carsten Eden,et al.  The impact of advection schemes on restratifiction due to lateral shear and baroclinic instabilities , 2015 .

[52]  M. Prather Numerical advection by conservation of second-order moments. [for trace element spatial distribution and chemical interaction in atmosphere] , 1986 .

[53]  Eleuterio F. Toro,et al.  Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..

[54]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[55]  Michael Dumbser,et al.  High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids , 2015, J. Comput. Phys..

[56]  Michael Dumbser,et al.  Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables , 2015, Computational astrophysics and cosmology.

[57]  Eleuterio F. Toro,et al.  Implicit, semi-analytical solution of the generalized Riemann problem for stiff hyperbolic balance laws , 2015, J. Comput. Phys..

[58]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[59]  Andreas Oschlies,et al.  Diagnostics of diapycnal diffusivity in z-level ocean models part I: 1-Dimensional case studies , 2010 .

[60]  M. A. Morales Maqueda,et al.  Second-order moment advection scheme applied to Arctic Ocean simulation , 2006 .

[61]  H. Burchard,et al.  Comparative quantification of physically and numerically induced mixing in ocean models , 2008 .

[62]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[63]  Alain Dervieux,et al.  A vertex centered high order MUSCL scheme applying to linearised Euler acoustics , 2002 .

[64]  Michael Dumbser,et al.  A Novel Solver for the Generalized Riemann Problem Based on a Simplified LeFloch–Raviart Expansion and a Local Space–Time Discontinuous Galerkin Formulation , 2016, J. Sci. Comput..

[65]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[66]  M. Jeroen Molemaker,et al.  Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? , 2012 .

[67]  Armin Iske,et al.  Particle Flow Simulation by Using Polyharmonic Splines , 2007 .

[68]  Huazhong Tang,et al.  A direct Eulerian GRP scheme for relativistic hydrodynamics: Two-dimensional case , 2012, J. Comput. Phys..

[69]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem Part I: General theory , 1988 .

[70]  Michael Dumbser,et al.  Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms , 2012, J. Comput. Phys..

[71]  Michael Dumbser,et al.  High‐order ADER‐WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics , 2013, 1310.7256.

[72]  Michael Dumbser,et al.  Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors , 2011, J. Comput. Phys..

[73]  Hans Burchard Quantification of numerically induced mixing and dissipation in discretisations of shallow water equations , 2012 .

[74]  Alistair Adcroft,et al.  On methods for solving the oceanic equations of motion in generalized vertical coordinates , 2006 .

[75]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[76]  Michael Dumbser,et al.  A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D , 2014, J. Comput. Phys..

[77]  Tatsien Li,et al.  Boundary value problems for quasilinear hyperbolic systems , 1985 .

[78]  Mehmet Ilıcak Quantifying spatial distribution of spurious mixing in ocean models , 2016, Ocean modelling.

[79]  Hiroyasu Hasumi,et al.  Effect of numerical diffusion on the water mass transformation in eddy-resolving models , 2014 .

[80]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[81]  Laurent Debreu,et al.  On the stability and accuracy of the harmonic and biharmonic isoneutral mixing operators in ocean models , 2012 .

[82]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[83]  Philip W. Jones,et al.  A multi-resolution approach to global ocean modeling , 2013 .

[84]  J. Falcovitz,et al.  A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .

[85]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[86]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[87]  Sergey Danilov,et al.  Ocean modeling on unstructured meshes , 2013 .

[88]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[89]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[90]  Stephen M. Griffies,et al.  Spurious Diapycnal Mixing Associated with Advection in a z-Coordinate Ocean Model , 2000 .

[91]  Jiequan Li,et al.  The generalized Riemann problems for compressible fluid flows: Towards high order , 2014, J. Comput. Phys..

[92]  C. W. Hirt Heuristic stability theory for finite-difference equations☆ , 1968 .

[93]  Mehmet Ilicak,et al.  Spurious dianeutral mixing and the role of momentum closure , 2012 .

[94]  Qiang Wang,et al.  Ice-shelf basal melting in a global finite-element sea-ice/ice-shelf/ocean model , 2012, Annals of Glaciology.

[95]  P. Lax Hyperbolic systems of conservation laws II , 1957 .