Dynamic level set regularization for large distributed parameter estimation problems
暂无分享,去创建一个
[1] S. B. Childs,et al. INVERSE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS. , 1968 .
[2] T. Steihaug. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .
[3] Nariida C. Smith,et al. Two-Dimensional DC Resistivity Inversion for Dipole-Dipole Data , 1984, IEEE Transactions on Geoscience and Remote Sensing.
[4] A. Devaney. The limited-view problem in diffraction tomography , 1989 .
[5] Per Christian Hansen,et al. Regularization methods for large-scale problems , 1993 .
[6] R. Parker. Geophysical Inverse Theory , 1994 .
[7] F. Santosa. A Level-set Approach Inverse Problems Involving Obstacles , 1995 .
[8] G. Papanicolaou,et al. High-contrast impedance tomography , 1996 .
[9] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[10] W. Rundell,et al. Iterative methods for the reconstruction of an inverse potential problem , 1996 .
[11] M. Hanke. Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems , 1997 .
[12] G. Newman,et al. Three-dimensional massively parallel electromagnetic inversion—II. Analysis of a crosswell electromagnetic experiment , 1997 .
[13] Gregory A. Newman,et al. Three‐dimensional massively parallel electromagnetic inversion—I. Theory , 1997 .
[14] David Isaacson,et al. Electrical Impedance Tomography , 1999, SIAM Rev..
[15] E. Haber,et al. Fast Simulation of 3D Electromagnetic Problems Using Potentials , 2000 .
[16] M. Burger. A level set method for inverse problems , 2001 .
[17] E. Haber,et al. Preconditioned all-at-once methods for large, sparse parameter estimation problems , 2001 .
[18] H. Tam,et al. New integrable differential-difference systems: Lax pairs, bilinear forms and soliton solutions , 2001 .
[19] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[20] A K Svinin,et al. Modified (n-1,1)th Gelfand-Dickey hierarchies and Toda-type systems , 2001 .
[21] Yin Zhang,et al. Variationally constrained numerical solution of electrical impedance tomography , 2003 .
[22] U. Ascher. Computational methods for large distributed parameter estimation problems with possible discontinuities , 2003 .
[23] E. Haber,et al. A multigrid method for distributed parameter estimation problems. , 2003 .
[24] J. Sethian,et al. FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .
[25] M. Burger. Levenberg–Marquardt level set methods for inverse obstacle problems , 2004 .
[26] E. Haber. A multilevel, level-set method for optimizing eigenvalues in shape design problems , 2004 .
[27] E. Haber,et al. Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach , 2004 .
[28] T. Chan,et al. Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients , 2004 .
[29] F. FRÜHAUF,et al. Analysis of Regularization Methods for the Solution of Ill-Posed Problems Involving Discontinuous Operators , 2005, SIAM J. Numer. Anal..
[30] Eric T. Chung,et al. Electrical impedance tomography using level set representation and total variational regularization , 2005 .
[31] Sergio Vessella,et al. Lipschitz stability for the inverse conductivity problem , 2005, Adv. Appl. Math..
[32] Uri M. Ascher,et al. On level set regularization for highly ill-posed distributed parameter estimation problems , 2006, J. Comput. Phys..
[33] O. Dorn,et al. Level set methods for inverse scattering , 2006 .
[34] Hui Huang,et al. On Effective Methods for Implicit Piecewise Smooth Surface Recovery , 2006, SIAM J. Sci. Comput..
[35] U. Ascher,et al. Artificial time integration , 2007 .
[36] E. Haber,et al. RESINVM3D: A 3D resistivity inversion package , 2007 .