Pinned fronts in heterogeneous media of jump type

In this paper, we analyse the impact of a (small) heterogeneity of jump type on the most simple localized solutions of a 3-component FitzHugh–Nagumo-type system. We show that the heterogeneity can pin a 1-front solution, which travels with constant (non-zero) speed in the homogeneous setting, to a fixed, explicitly determined, distance from the heterogeneity. Moreover, we establish the stability of this heterogeneous pinned 1-front solution. In addition, we analyse the pinning of 1-pulse, or 2-front, solutions. The paper is concluded with simulations in which we consider the dynamics and interactions of N-front patterns in domains with M heterogeneities of jump type (N = 3, 4, M ≥ 1).

[1]  Björn Sandstede,et al.  Planar Radial Spots in a Three-Component FitzHugh–Nagumo System , 2011, J. Nonlinear Sci..

[2]  Shin-ichiro Ei,et al.  Front dynamics in heterogeneous diffusive media , 2010 .

[3]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[4]  M. Mimura,et al.  Wave-blocking phenomena in bistable reaction-diffusion systems , 1989 .

[5]  Takashi Teramoto,et al.  Heterogeneity-induced defect bifurcation and pulse dynamics for a three-component reaction-diffusion system. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[7]  Gianne Derks,et al.  Stability Analysis of π-Kinks in a 0-π Josephson Junction , 2007, SIAM J. Appl. Dyn. Syst..

[8]  Arjen Doelman,et al.  Homoclinic Stripe Patterns , 2002, SIAM J. Appl. Dyn. Syst..

[9]  Keith Promislow,et al.  Nonlinear Asymptotic Stability of the Semistrong Pulse Dynamics in a Regularized Gierer-Meinhardt Model , 2007, SIAM J. Math. Anal..

[10]  Kei-Ichi Ueda,et al.  Dynamics of traveling pulses in heterogeneous media. , 2007, Chaos.

[11]  Guido Schneider,et al.  Attractors for modulation equations on unbounded domains-existence and comparison , 1995 .

[12]  Shin-Ichiro Ei,et al.  Dynamics of front solutions in a specific reaction-diffusion system in one dimension , 2008 .

[13]  Jack Xin,et al.  Front Propagation in Heterogeneous Media , 2000, SIAM Rev..

[14]  Keith Promislow,et al.  Front Interactions in a Three-Component System , 2010, SIAM J. Appl. Dyn. Syst..

[15]  Peter van Heijster,et al.  Pulse Dynamics in a Three-Component System: Existence Analysis , 2009 .

[16]  Peter van Heijster,et al.  Pulse dynamics in a three-component system : stability and bifurcations , 2008 .

[17]  Mathias Bode,et al.  Interacting Pulses in Three-Component Reaction-Diffusion Systems on Two-Dimensional Domains , 1997 .

[18]  Kei-Ichi Ueda,et al.  Dynamics of traveling pulses in heterogeneous media of jump type , 2006 .

[19]  A. Scott,et al.  Perturbation analysis of fluxon dynamics , 1978 .

[20]  Robert E. O'Malley,et al.  Analyzing Multiscale Phenomena Using Singular Perturbation Methods , 1999 .

[21]  N. Dirr,et al.  Pinning and de-pinning phenomena in front propagation in heterogeneous media , 2006 .

[22]  Kei-Ichi Ueda,et al.  Scattering and separators in dissipative systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[24]  Mathias Bode,et al.  Spot bifurcations in three-component reaction-diffusion systems: The onset of propagation , 1998 .

[25]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .