Atlas of reflectance spectra of terrestrial, lunar, and meteoritic powders and frosts from 92 to 1800 nm

Abstract The reflectance spectra of powdered samples of selected minerals, meteorites, lunar materials, and frosts are presented as an aid in the interpretation of present and future remote sensing data of Solar System objects. Spectra obtained in separate wavelength regions have been combined and normalized, yielding coverage from 92 to 1800 nm. Spectral features include reflectance maxima in the far-ultraviolet region, produced by valence-conduction interband transitions, and reflectance minima in the near-ultraviolet, visible, and near-infrared regions, produced by charge transfer and crystal field transitions. Specific maxima and minima are diagnostic of mineral type and composition; additionally, the minerals present in mixtures such as meteorites and lunar samples can be determined.

[1]  T. Shankland,et al.  Optical Properties and Electronic Structure of Mantle Silicates , 1976 .

[2]  A. J. Meadows,et al.  Ultraviolet reflectance properties of asteroids , 1985 .

[3]  C. Pieters Composition of the Upper Lunar Crust: Preliminary Results from Near Infrared Reflectance Data , 1983 .

[4]  H. Mao,et al.  ABSORPTION SPECTROSCOPY OF IONIC AND MOLECULAR UNITS IN CRYSTALS AND GLASSES , 1975 .

[5]  Carle M. Pieters,et al.  Moon: near-infrared spectral reflectance, a first good look. , 1981 .

[6]  J. Salisbury,et al.  Comparisons of meteorite and asteroid spectral reflectivities , 1973 .

[7]  T. McCord,et al.  Lunar multispectral maps: Part II of the lunar nearside , 1979 .

[8]  A. J. Cohen,et al.  Some characteristics of enstatite from enstatite achondrites , 1967 .

[9]  B. Hapke,et al.  Bidirectional reflectance spectroscopy: 2. Experiments and observations , 1981 .

[10]  B. Hapke,et al.  Far-UV, visible, and near-IR reflectance spectra of frosts of H2O, CO2, NH3 and SO2 , 1981 .

[11]  Bruce Hapke,et al.  Effects of vapor-phase deposition processes on the optical, chemical, and magnetic properties OE the lunar regolith , 1975 .

[12]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[13]  Carle M. Pieters,et al.  Origin of olivine at Copernicus , 1985 .

[14]  B. Hapke,et al.  Reflectance measurements of lunar materials in the vacuum ultraviolet , 1978 .

[15]  M. Gaffey,et al.  Mineralogical-petrological characterization of near-Earth asteroids , 1984 .

[16]  M. Gaffey,et al.  Possible lunar source areas of meteorite ALHA81005: Geochemical remote sensing information , 1983 .

[17]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[18]  B. Hapke,et al.  Vacuum ultraviolet reflectance spectra of groups L, LL, and E chondrites and of achondrites , 1980 .

[19]  W. Hartmann,et al.  The Meteorite-Asteroid Connection: Two Olivine-Rich Asteroids , 1984, Science.

[20]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[21]  K. Keil Mineralogical and chemical relationships among enstatite chondrites , 1968 .

[22]  C. Pieters,et al.  Copernicus Crater Central Peak: Lunar Mountain of Unique Composition , 1982, Science.

[23]  B. Hapke,et al.  Lunar Soil: Iron and Titanium Bands in the Glass Fraction , 1977, Science.

[24]  H. Mao,et al.  Effects of compositional variation on absorption spectra of lunar pyroxenes , 1978 .

[25]  M. Gaffey,et al.  Asteroid surface materials: Mineralogical characterizations from reflectance spectra , 1977 .

[26]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[27]  E. Jarosewich,et al.  THE COMPOSITION OF THE JOHNSTOWN METEORITE , 1971 .

[28]  T. McCord,et al.  Multispectral mapping of the lunar surface using ground-based telescopes , 1976 .

[29]  J. N. Bahcall,et al.  The Space Telescope Observatory , 1979 .

[30]  M. Gaffey,et al.  Near-Earth Asteroids: Possible Sources from Reflectance Spectroscopy , 1985, Science.