Data-driven local bandwidth selection for additive models with missing data
暂无分享,去创建一个
[1] J. Ibrahim,et al. Model Selection Criteria for Missing-Data Problems Using the EM Algorithm , 2008, Journal of the American Statistical Association.
[2] Jean D. Opsomer,et al. Asymptotic Properties of Backfitting Estimators , 2000 .
[3] Oliver Linton,et al. Integration and backfitting methods in additive models-finite sample properties and comparison , 1999 .
[4] R. Tibshirani,et al. Linear Smoothers and Additive Models , 1989 .
[5] J. Ibrahim. Incomplete Data in Generalized Linear Models , 1990 .
[6] Graciela Boente,et al. Robust nonparametric estimation with missing data , 2009 .
[7] Joseph G. Ibrahim,et al. Missing data methods in longitudinal studies: a review , 2009 .
[8] Thomas Nittner,et al. The additive model affected by missing completely at random in the covariate , 2004, Comput. Stat..
[9] Roderick J. A. Little. Regression with Missing X's: A Review , 1992 .
[10] J. P. Albaladejo,et al. Métodos de inferencia estadística con datos faltantes: estudio de simulación sobre los efectos en las estimaciones. , 2006 .
[11] Philip E. Cheng,et al. Applications of kernel regression estimation:survey , 1990 .
[12] Philip E. Cheng,et al. Nonparametric regression estimation with missing data , 1995 .
[13] E. Nadaraya. On Estimating Regression , 1964 .
[14] Roger A. Sugden,et al. Multiple Imputation for Nonresponse in Surveys , 1988 .
[15] C. Fuchs. Maximum Likelihood Estimation and Model Selection in Contingency Tables with Missing Data , 1982 .
[16] M. D. Martínez-Miranda,et al. A Bootstrap Local Bandwidth Selector for Additive Models , 2008 .
[17] Enno Mammen,et al. The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions , 1999 .
[18] Joel L. Horowitz,et al. Optimal estimation in additive regression models , 2006 .
[19] S. Lipsitz,et al. Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable , 2001 .
[20] Søren Feodor Nielsen,et al. Nonparametric conditional mean imputation , 2001 .
[21] Enno Mammen,et al. Bandwidth selection for smooth backfitting in additive models , 2005, math/0507425.
[22] Wenceslao González-Manteiga,et al. Nonparametric Mean Estimation with Missing Data , 2004 .
[23] D. M. Titterington,et al. Imputation of missing values using density estimation , 1989 .
[24] Joseph G. Ibrahim,et al. Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable , 1999 .
[25] D. Rubin. INFERENCE AND MISSING DATA , 1975 .
[26] O. Linton,et al. A kernel method of estimating structured nonparametric regression based on marginal integration , 1995 .
[27] G Molenberghs,et al. Model selection for incomplete and design‐based samples , 2006, Statistics in medicine.
[28] María Dolores Martínez Miranda,et al. The choice of smoothing parameter in nonparametric regression through Wild Bootstrap , 2004, Comput. Stat. Data Anal..
[29] Geert Molenberghs,et al. Local multiple imputation , 2002 .
[30] Dag Tjøstheim,et al. Nonparametric Identification of Nonlinear Time Series: Projections , 1994 .
[31] Jens Perch Nielsen,et al. Smooth backfitting in practice , 2005 .
[32] Philip E. Cheng,et al. Nonparametric Estimation of Mean Functionals with Data Missing at Random , 1994 .
[33] Raymond J. Carroll,et al. Local Linear Regression for Generalized Linear Models with Missing Data , 1998 .
[34] J. Ibrahim,et al. Semiparametric Models for Missing Covariate and Response Data in Regression Models , 2006, Biometrics.
[35] D. M. Titterington,et al. Kernel‐Based Density Estimates from Incomplete Data , 1983 .
[36] Werner Vach,et al. Logistic Regression with Missing Values in the Covariates , 1994 .
[37] J. Neyman. Contribution to the Theory of Sampling Human Populations , 1938 .
[39] D. Rubin,et al. Statistical Analysis with Missing Data , 1988 .
[40] L. Zhao,et al. Weighted Semiparametric Estimation in Regression Analysis with Missing Covariate Data , 1997 .
[41] David Ruppert,et al. Fitting a Bivariate Additive Model by Local Polynomial Regression , 1997 .