Erratum to: Clinical and molecular genetics of neonatal diabetes due to mutations in the insulin gene

Erratum to: Rev Endocr Metab Disord (2010) 11:205-215 DOI 10.1007/s11154-010-9151-3 The following INS gene mutation was numbered incorrectly: In Figure 1, Figure 2, and section 6.1, we refer to the mutation V93L. This should have read as V92L. This does not affect the numbering of the other mutations, which remain correct. The corrected versions of Figures 1 and ​and22 are presented below. We apologize for this error. Fig. 1 Diagrammatic representation of the amino acid sequence of human preproinsulin (signal peptide–green, B-chain–red, C-peptide–orange, A-chain–dark blue) indicating sites of mutations identified in patients with diabetes as ... Fig. 2 Summary of human insulin gene mutations and disease phenotype. The numbers in brackets indicate the number of probands with that specific mutation. PNDM, permanent neonatal diabetes mellitus; TNDM, transient neonatal diabetes mellitus; MODY, maturity-onset ...

[1]  F. Sanger Chemistry of insulin; determination of the structure of insulin opens the way to greater understanding of life processes. , 1959, Science.

[2]  D. Nicol,et al.  Amino-Acid Sequence of Human Insulin , 1960, Nature.

[3]  D. Steiner,et al.  Insulin Biosynthesis: Evidence for a Precursor , 1967, Science.

[4]  J. Kimmel,et al.  Studies of Human Insulin from Nondiabetic and Diabetic Pancreas , 1967, Diabetes.

[5]  Raymond Scalettar,et al.  The Metabolic Basis of Inherited Disease , 1967 .

[6]  D. Steiner,et al.  Studies on human proinsulin. Isolation and amino acid sequence of the human pancreatic C-peptide. , 1971, The Journal of biological chemistry.

[7]  W. Rutter,et al.  Nucleotide sequence of a cDNA clone encoding human preproinsulin , 1979, Nature.

[8]  J. Olefsky,et al.  A structurally abnormal insulin causing human diabetes , 1979, Nature.

[9]  R. Bergenstal,et al.  Familial hyperproinsulinemia: partial characterization of circulating proinsulin-like material. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Olefsky,et al.  Diabetes due to secretion of an abnormal insulin. , 1980, The New England journal of medicine.

[11]  Howard M. Goodman,et al.  Sequence of the human insulin gene , 1980, Nature.

[12]  P. Gruppuso,et al.  Familial hyperproinsulinemia due to a proposed defect in conversion of proinsulin to insulin. , 1984, The New England journal of medicine.

[13]  K. Polonsky,et al.  Familial hyperinsulinemia due to a structurally abnormal insulin. Definition of an emerging new clinical syndrome. , 1984, The New England journal of medicine.

[14]  T. Kawakami,et al.  Posttranslational cleavage of proinsulin is blocked by a point mutation in familial hyperproinsulinemia. , 1985, The Journal of clinical investigation.

[15]  Y. Iwamoto,et al.  A New Case of Abnormal Insulinemia with Diabetes: Reduced Insulin Values Determined by Radioreceptor Assay , 1986, Diabetes.

[16]  T. Sanke,et al.  Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama). Clinical and functional characteristics of [LeuA3] insulin. , 1986, The Journal of clinical investigation.

[17]  R. Hammer,et al.  A mutant human proinsulin is secreted from islets of Langerhans in increased amounts via an unregulated pathway. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Accili,et al.  Two unrelated patients with familial hyperproinsulinemia due to a mutation substituting histidine for arginine at position 65 in the proinsulin molecule: identification of the mutation by direct sequencing of genomic deoxyribonucleic acid amplified by polymerase chain reaction. , 1990, The Journal of clinical endocrinology and metabolism.

[19]  D. Pipeleers,et al.  Measuring the balance between insulin synthesis and insulin release. , 1991, Biochemical and biophysical research communications.

[20]  K. Polonsky,et al.  A novel point mutation in the human insulin gene giving rise to hyperproinsulinemia (proinsulin Kyoto). , 1992, The Journal of clinical investigation.

[21]  D. Steiner,et al.  Familial Hyperproinsulinemia Associated With NIDDM: A case study , 1993, Diabetes Care.

[22]  M. Nauck,et al.  Hyperproinsulinemia in a three-generation Caucasian family due to mutant proinsulin (Arg65-His) not associated with imparied glucose tolerance: the contribution of mutant proinsulin to insulin bioactivity. , 1996, The Journal of clinical endocrinology and metabolism.

[23]  K. Polonsky,et al.  A novel point mutation in the insulin gene giving rise to hyperproinsulinemia. , 1997, The Journal of clinical endocrinology and metabolism.

[24]  P. Bénit,et al.  Familial hyperproinsulinaemia due to a mutation substituting histidine for arginine at position 65 in proinsulin: identification of the mutation by restriction enzyme mapping , 1998, European Journal of Pediatrics.

[25]  Danhong Lu,et al.  A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. , 1999, The Journal of clinical investigation.

[26]  T. Kato,et al.  Polymorphisms of the insulin gene among Japanese subjects. , 2001, Metabolism: clinical and experimental.

[27]  Masataka Mori,et al.  Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. , 2002, The Journal of clinical investigation.

[28]  P. Halban,et al.  Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. , 2003, Diabetes.

[29]  K. Polonsky,et al.  Insulin Wakayama: familial mutant insulin syndrome in Japan , 1987, Diabetologia.

[30]  F. Ashcroft,et al.  Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. , 2004, The New England journal of medicine.

[31]  K. Lemaire,et al.  Probe-Independent and Direct Quantification of Insulin mRNA and Growth Hormone mRNA in Enriched Cell Preparations , 2006, Diabetes.

[32]  R. Scharfmann,et al.  Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. , 2006, The New England journal of medicine.

[33]  A. Hattersley,et al.  Insulin gene mutations as a cause of permanent neonatal diabetes , 2007, Proceedings of the National Academy of Sciences.

[34]  E. Wolf,et al.  Dominant-Negative Effects of a Novel Mutated Ins2 Allele Causes Early-Onset Diabetes and Severe β-Cell Loss in Munich Ins2C95S Mutant Mice , 2007, Diabetes.

[35]  B. Shields,et al.  Insulin Mutation Screening in 1,044 Patients With Diabetes , 2008, Diabetes.

[36]  S. Ellard,et al.  Permanent neonatal diabetes mellitus due to a C96Y heterozygous mutation in the insulin gene. A case report. , 2008, JOP : Journal of the pancreas.

[37]  M. McCarthy,et al.  Learning From Molecular Genetics Novel Insights Arising From the Definition of Genes for Monogenic and Type 2 Diabetes , 2008 .

[38]  R. Scharfmann,et al.  Heterozygous Missense Mutations in the Insulin Gene Are Linked to Permanent Diabetes Appearing in the Neonatal Period or in Early Infancy , 2008, Diabetes.

[39]  Geir Joner,et al.  Mutations in the Insulin Gene Can Cause MODY and Autoantibody-Negative Type 1 Diabetes , 2008, Diabetes.

[40]  T. Hansen,et al.  Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus. , 2008, The Journal of clinical investigation.

[41]  T. Hansen,et al.  Further evidence that mutations in INS can be a rare cause of Maturity-Onset Diabetes of the Young (MODY) , 2010, BMC Medical Genetics.

[42]  F. Meschi,et al.  Insulin Gene Mutations as Cause of Diabetes in Children Negative for Five Type 1 Diabetes Autoantibodies , 2009, Diabetes Care.

[43]  T. Hansen,et al.  Insulin Gene Mutations Resulting in Early-Onset Diabetes: Marked Differences in Clinical Presentation, Metabolic Status, and Pathogenic Effect Through Endoplasmic Reticulum Retention , 2009, Diabetes.

[44]  S. Ellard,et al.  Update of mutations in the genes encoding the pancreatic beta‐cell KATP channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism , 2009, Human mutation.

[45]  P. Arvan,et al.  Misfolded Proinsulin Affects Bystander Proinsulin in Neonatal Diabetes* , 2009, The Journal of Biological Chemistry.

[46]  J. Argente,et al.  Testing for monogenic diabetes among children and adolescents with antibody‐negative clinically defined Type 1 diabetes , 2009, Diabetic medicine : a journal of the British Diabetic Association.

[47]  A. Hattersley,et al.  Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis , 2010, Proceedings of the National Academy of Sciences.

[48]  Soo-Young Park,et al.  In vitro processing and secretion of mutant insulin proteins that cause permanent neonatal diabetes. , 2010, American journal of physiology. Endocrinology and metabolism.

[49]  D. Steiner,et al.  Mutant proinsulin proteins associated with neonatal diabetes are retained in the endoplasmic reticulum and not efficiently secreted. , 2010, Biochemical and biophysical research communications.