Learning Entailment Relations by Global Graph Structure Optimization

Identifying entailment relations between predicates is an important part of applied semantic inference. In this article we propose a global inference algorithm that learns such entailment rules. First, we define a graph structure over predicates that represents entailment relations as directed edges. Then, we use a global transitivity constraint on the graph to learn the optimal set of edges, formulating the optimization problem as an Integer Linear Program. The algorithm is applied in a setting where, given a target concept, the algorithm learns on the fly all entailment rules between predicates that co-occur with this concept. Results show that our global algorithm improves performance over baseline algorithms by more than 10%.

[1]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[2]  A. Stuart,et al.  Non-Parametric Statistics for the Behavioral Sciences. , 1957 .

[3]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[4]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[5]  Christiane Fellbaum A semantic network of English: the mother of all WordNets , 1998 .

[6]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[7]  Mitchell P. Marcus,et al.  Adding Semantic Annotation to the Penn TreeBank , 1998 .

[8]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[9]  Christiane Fellbaum,et al.  A Semantic Network of English: The Mother of All WordNets , 1998, Comput. Humanit..

[10]  Ralph Grishman,et al.  NOMLEX: a lexicon of nominalizations , 1998 .

[11]  Dekang Lin,et al.  Automatic Retrieval and Clustering of Similar Words , 1998, ACL.

[12]  Martha Palmer,et al.  Class-Based Construction of a Verb Lexicon , 2000, AAAI/IAAI.

[13]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[14]  Patrick Pantel,et al.  Discovery of inference rules for question-answering , 2001, Natural Language Engineering.

[15]  Martha Palmer,et al.  Adding predicate argument structure to the Penn TreeBank , 2002 .

[16]  Pradeep Ravikumar,et al.  A Comparison of String Distance Metrics for Name-Matching Tasks , 2003, IIWeb.

[17]  Dekang Lin,et al.  Dependency-Based Evaluation of Minipar , 2003 .

[18]  David J. Weir,et al.  A General Framework for Distributional Similarity , 2003, EMNLP.

[19]  Nizar Habash,et al.  A Categorial Variation Database for English , 2003, NAACL.

[20]  Patrick Pantel,et al.  VerbOcean: Mining the Web for Fine-Grained Semantic Verb Relations , 2004, EMNLP.

[21]  Ido Dagan,et al.  Scaling Web-based Acquisition of Entailment Relations , 2004, EMNLP.

[22]  Ernst Althaus,et al.  Computing Locally Coherent Discourses , 2004, ACL.

[23]  Dan Roth,et al.  A Linear Programming Formulation for Global Inference in Natural Language Tasks , 2004, CoNLL.

[24]  Brian Young,et al.  The Cross-Breeding of Dictionaries , 2004, LREC.

[25]  Daniel Jurafsky,et al.  Learning Syntactic Patterns for Automatic Hypernym Discovery , 2004, NIPS.

[26]  Satoshi Sekine,et al.  Automatic Paraphrase Discovery based on Context and Keywords between NE Pairs , 2005, IJCNLP.

[27]  Noah A. Smith,et al.  Contrastive Estimation: Training Log-Linear Models on Unlabeled Data , 2005, ACL.

[28]  Rajat Raina,et al.  Robust Textual Inference Via Learning and Abductive Reasoning , 2005, AAAI.

[29]  Graeme Hirst,et al.  Evaluating WordNet-based Measures of Lexical Semantic Relatedness , 2006, CL.

[30]  Thorsten Joachims,et al.  A support vector method for multivariate performance measures , 2005, ICML.

[31]  Sebastian Riedel,et al.  Incremental Integer Linear Programming for Non-projective Dependency Parsing , 2006, EMNLP.

[32]  Ido Dagan,et al.  Integrating Pattern-Based and Distributional Similarity Methods for Lexical Entailment Acquisition , 2006, ACL.

[33]  Daniel Jurafsky,et al.  Semantic Taxonomy Induction from Heterogenous Evidence , 2006, ACL.

[34]  Ido Dagan,et al.  Semantic Inference at the Lexical-Syntactic Level , 2007, AAAI.

[35]  Patrick Pantel,et al.  LEDIR: An Unsupervised Algorithm for Learning Directionality of Inference Rules , 2007, EMNLP.

[36]  D. Roth,et al.  Context Sensitive Paraphrasing with a Single Unsupervised Classifier , 2007 .

[37]  Marti A. Hearst,et al.  Automating Creation of Hierarchical Faceted Metadata Structures , 2007, NAACL.

[38]  Dan Roth,et al.  Context Sensitive Paraphrasing with a Global Unsupervised Classifier , 2007, ECML.

[39]  Christiane Fellbaum,et al.  On the Role of Lexical and World Knowledge in RTE3 , 2007, ACL-PASCAL@ACL.

[40]  Taghi M. Khoshgoftaar,et al.  Experimental perspectives on learning from imbalanced data , 2007, ICML '07.

[41]  J. Clarke,et al.  Global inference for sentence compression : an integer linear programming approach , 2008, J. Artif. Intell. Res..

[42]  Vladimir Nikulin Classification of Imbalanced Data with Random sets and Mean-Variance Filtering , 2008, Int. J. Data Warehous. Min..

[43]  Viktor Pekar,et al.  Discovery of event entailment knowledge from text corpora , 2008, Comput. Speech Lang..

[44]  Ian Horrocks,et al.  Modular Reuse of Ontologies: Theory and Practice , 2008, J. Artif. Intell. Res..

[45]  Ido Dagan,et al.  Learning Entailment Rules for Unary Templates , 2008, COLING.

[46]  Christopher D. Manning,et al.  Enforcing Transitivity in Coreference Resolution , 2008, ACL.

[47]  Ido Dagan,et al.  Recognizing textual entailment: Rational, evaluation and approaches , 2009, Natural Language Engineering.

[48]  Eric P. Xing,et al.  Concise Integer Linear Programming Formulations for Dependency Parsing , 2009, ACL.

[49]  Bob Coyne,et al.  LexPar: A Freely Available English Paraphrase Lexicon Automatically Extracted from FrameNet , 2009, 2009 IEEE International Conference on Semantic Computing.

[50]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[51]  Bonnie L. Webber,et al.  Special issue on interactive question answering: Introduction , 2009, Natural Language Engineering.

[52]  Oren Etzioni,et al.  Unsupervised Methods for Determining Object and Relation Synonyms on the Web , 2014, J. Artif. Intell. Res..

[53]  Ido Dagan,et al.  Augmenting WordNet-based Inference with Argument Mapping , 2009, TextInfer@ACL.

[54]  S. T E F A N H A R M E L I N G Inferring textual entailment with a probabilistically sound calculus ∗ , 2009 .

[55]  Ido Dagan,et al.  The Sixth PASCAL Recognizing Textual Entailment Challenge , 2009, TAC.

[56]  Dan Roth,et al.  Constraints Based Taxonomic Relation Classification , 2010, EMNLP.

[57]  Vladimir Nikulin Classification of Imbalanced Data with Random Sets and Mean-Variance Filtering. , 2010 .

[58]  Ido Dagan,et al.  Global Learning of Focused Entailment Graphs , 2010, ACL.

[59]  Oren Etzioni,et al.  Learning First-Order Horn Clauses from Web Text , 2010, EMNLP.

[60]  Ido Dagan,et al.  Generating Entailment Rules from FrameNet , 2010, ACL.

[61]  Ido Dagan,et al.  Directional distributional similarity for lexical inference , 2010, Natural Language Engineering.

[62]  Peter Clark,et al.  The Seventh PASCAL Recognizing Textual Entailment Challenge , 2011, TAC.

[63]  Ido Dagan,et al.  Global Learning of Typed Entailment Rules , 2011, ACL.

[64]  Simone Paolo Ponzetto,et al.  Collaboratively built semi-structured content and Artificial Intelligence: The story so far , 2013, Artif. Intell..

[65]  Ido Dagan,et al.  Recognizing Textual Entailment: Models and Applications , 2013, Recognizing Textual Entailment: Models and Applications.