A comparison of the Extrapolated Successive Overrelaxation and the Preconditioned Simultaneous Displacement methods for augmented linear systems

In this paper we study the impact of two types of preconditioning on the numerical solution of large sparse augmented linear systems. The first preconditioning matrix is the lower triangular part whereas the second is the product of the lower triangular part with the upper triangular part of the augmented system’s coefficient matrix. For the first preconditioning matrix we form the Generalized Modified Extrapolated Successive Overrelaxation (GMESOR) method, whereas the second preconditioning matrix yields the Generalized Modified Preconditioned Simultaneous Displacement (GMPSD) method, which is an extrapolated form of the Symmetric Successive Overrelaxation method. We find sufficient conditions for each aforementioned iterative method to converge. In addition, we develop a geometric approach, for determining the optimum values of their parameters and corresponding spectral radii. It is shown that both iterative methods studied (GMESOR and GMPSD) attain the same rate of convergence. Numerical results confirm our theoretical expectations.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  The modified preconditioned simultaneous displacement (MPSD) method , 1984 .

[3]  Lu Shu,et al.  Multilevel Gradient Uzawa Algorithms for Symmetric Saddle Point Problems , 2013, J. Sci. Comput..

[4]  Volker John,et al.  On the efficiency of linearization schemes and coupled multigrid methods in the simulation of a 3D flow around a cylinder , 2006 .

[5]  A generalisation of systematic relaxation methods for consistently ordered matrices , 1969 .

[6]  A. Wathen,et al.  FAST ITERATIVE SOLUTION OF STABILIZED STOKES SYSTEMS .1. USING SIMPLE DIAGONAL PRECONDITIONERS , 1993 .

[7]  Xiangmin Jiao,et al.  A hybrid geometric + algebraic multigrid method with semi-iterative smoothers , 2014, Numer. Linear Algebra Appl..

[8]  Michael Griebel,et al.  Numerical Simulation in Fluid Dynamics: A Practical Introduction , 1997 .

[9]  Gene H. Golub,et al.  Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices , 2007, Math. Comput..

[10]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[11]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[12]  Stefan Takacs,et al.  Convergence analysis of multigrid methods with collective point smoothers for optimal control problems , 2011, Comput. Vis. Sci..

[13]  Cornelis W. Oosterlee,et al.  Multigrid relaxation methods for systems of saddle point type , 2008 .

[14]  P. Monk,et al.  Multilevel discretization of symmetric saddle point systems without the discrete LBB condition , 2012 .

[15]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[16]  Constantin Bacuta,et al.  Cascadic multilevel algorithms for symmetric saddle point systems , 2013, Comput. Math. Appl..

[17]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[18]  M. Schultz,et al.  Preconditioning by fast direct methods for nonself-adjoint nonseparable elliptic equations , 1986 .

[19]  Tie Zhang,et al.  A note on an SOR-like method for augmented systems , 2003 .

[20]  Andrew J. Wathen,et al.  Fast iterative solution of stabilised Stokes systems, part I: using simple diagonal preconditioners , 1993 .

[21]  Ming Wang,et al.  Multigrid Methods for the Stokes Equations using Distributive Gauss–Seidel Relaxations based on the Least Squares Commutator , 2013, Journal of Scientific Computing.

[22]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[23]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[24]  Apostolos Hadjidimos,et al.  Accelerated overrelaxation method , 1978 .

[25]  Nikolaos M. Missirlis Convergence theory of extrapolated iterative methods for a certain class of non-symmetric linear systems , 1984 .

[26]  Michael Griebel,et al.  Coarse Grid Classification: AMG on Parallel Computers , 2008 .

[27]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[28]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[29]  Nikolaos M. Missirlis,et al.  Is modified PSD equivalent to modified SOR for two-cyclic matrices? , 2010 .

[30]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[31]  Z. Bai,et al.  Sufficient conditions for the convergent splittings of non-Hermitian positive definite matrices , 2001 .

[32]  Zeng-Qi Wang,et al.  On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .

[33]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[34]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[35]  Michael Griebel,et al.  An Algebraic Multigrid Method for Linear Elasticity , 2003, SIAM J. Sci. Comput..

[36]  Todd Arbogast,et al.  A discretization and multigrid solver for a Darcy–Stokes system of three dimensional vuggy porous media , 2009 .

[37]  A. Wathen,et al.  Minimum residual methods for augmented systems , 1998 .

[38]  Gene H. Golub,et al.  Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices , 2006, SIAM J. Sci. Comput..

[39]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[40]  Cornelis W. Oosterlee,et al.  An efficient multigrid solver for a reformulated version of the poroelasticity system , 2007 .

[41]  Gene H. Golub,et al.  SOR-like Methods for Augmented Systems , 2001 .

[42]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[43]  D. J. Evans,et al.  On the Convergence of Some Generalized Preconditioned Iterative Methods , 1981 .

[44]  M. Griebel,et al.  Coarse grid classification – Part II : Automatic coarse grid agglomeration for parallel AMG , 2006 .

[45]  Walter Zulehner,et al.  On Schwarz-type smoothers for saddle point problems with applications to PDE-constrained optimization problems , 2009, Numerische Mathematik.

[46]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[47]  Stefan Takacs,et al.  Multigrid Methods for Elliptic Optimal Control Problems with Neumann Boundary Control , 2010 .

[48]  Michael Griebel,et al.  Coarse grid classification: a parallel coarsening scheme for algebraic multigrid methods , 2006, Numer. Linear Algebra Appl..

[49]  Catherine E. Powell,et al.  On Solving Stochastic Collocation Systems with Algebraic Multigrid , 2012 .

[50]  Bram Metsch,et al.  Algebraic Multigrid (AMG) for Saddle Point Systems , 2013 .

[51]  Michele Benzi,et al.  New multigrid smoothers for the Oseen problem , 2010, Numer. Linear Algebra Appl..

[52]  Gabriel Wittum,et al.  Transforming smoothers for PDE constrained optimization problems , 2008 .

[53]  D. J. Evans,et al.  The preconditioned simultaneous displacement method (PSD method) for elliptic difference equations , 1980 .

[54]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .