A Logic for Complete Information Systems

A logic LIS for complete information systems is proposed. The language of LIS contains constants corresponding to attribute and attribute-values. A sound and complete deductive system for the logic is presented. Decidability is also proved.

[1]  Ewa Orlowska,et al.  A logic of indiscernibility relations , 1984, Symposium on Computation Theory.

[2]  Ewa Orlowska,et al.  Logic of nondeterministic information , 1985, Stud Logica.

[3]  Dimiter Vakarelov Abstract Characterization of some Knowledge Representation Systems and the Logic NIL of Nondeterministic Information , 1986, AIMSA.

[4]  Ewa Orlowska,et al.  Kripke semantics for knowledge representation logics , 1990, Stud Logica.

[5]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[6]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[7]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[8]  Richard W. Hamming,et al.  Artificial Intelligence—II , 1997 .

[9]  J. Kacprzyk,et al.  Incomplete Information: Rough Set Analysis , 1997 .

[10]  Philippe Balbiani,et al.  Axiomatization of Logics Based on Kripke Models with Relative Accessibility Relations , 1998 .

[11]  Philippe Balbiani,et al.  A hierarchy of modal logics with relative accessibility relations , 1999, J. Appl. Non Class. Logics.

[12]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[13]  Stéphane Demri,et al.  Incomplete Information: Structure, Inference, Complexity , 2002, Monographs in Theoretical Computer Science An EATCS Series.

[14]  Md. Aquil Khan,et al.  Propositional Logics from Rough Set Theory , 2007, Trans. Rough Sets.

[15]  Jerzy W. Grzymala-Busse,et al.  Transactions on Rough Sets VI, Commemorating the Life and Work of Zdzislaw Pawlak, Part I , 2007, Trans. Rough Sets.