An estimation method of the average effect and the different accident risks when modelling a road safety measure: A simulation study

The combination of road accident frequencies before and after a similar change at a given number of sites are considered. Each target site includes different accident types and is linked to a specific control area. At any one target site it is assumed that the total number of accidents recorded is multinomially distributed between the before period and the after period and also between several mutually exclusive types. The parameter of the distribution depends on the different accident risks in the control area linked to each site as well as on the average effect of the change. A method of estimating simultaneously the average effect and the accident risks in control areas is suggested. Some simulated accidents data allow us to study the existence and consistence of the linear constrained estimator of the unknown vector parameter.

[1]  M. Crowder On constrained maximum likelihood estimation with non-i.i.d. observations , 1984 .

[2]  Bernard D. Flury,et al.  A note on Silvey's (1959) Theorem , 1997 .

[3]  T. Pham-Gia,et al.  Distributions of ratios of random variables from the power-quadratic exponential family and applications , 2005 .

[4]  E Hauer,et al.  Overdispersion in modelling accidents on road sections and in empirical bayes estimation. , 2001, Accident; analysis and prevention.

[5]  E Hauer,et al.  Prediction in road safety studies: an empirical inquiry. , 1991, Accident; analysis and prevention.

[6]  Siem Oppe The use of multiplicative models for analysis of road safety data , 1979 .

[7]  S Danielsson,et al.  Estimation of the effects of countermeasures on different types of accidents in the presence of regression effects. , 1988, Accident; analysis and prevention.

[8]  A N'Guessen CONSTRAINED ESTIMATION OF A ROAD SAFETY COVARIANCE MATRIX USING SCHUR COMPLEMENTS , 2003 .

[9]  Y D Wong,et al.  Are accidents poisson distributed? A statistical test. , 1993, Accident; analysis and prevention.

[10]  A J Nicholson,et al.  The variability of accident counts. , 1985, Accident; analysis and prevention.

[11]  E Allain Modèles linéaires généralisés appliqués à l'étude des nombres d'accidents sur des sites routiersThe application of generalized linear models to the investigation of accident frequencies at road sites. The Poisson model and its extensions Le modèle de Poisson et ses extensions , 2001 .

[12]  S Lassarre,et al.  Analysis of progress in road safety in ten European countries. , 2001, Accident; analysis and prevention.

[13]  Assi N'Guessan Contribution à l'analyse statistique d'une mesure de sécurité routière , 1993 .

[14]  Ezra Hauer,et al.  OBSERVATIONAL BEFORE-AFTER STUDIES IN ROAD SAFETY -- ESTIMATING THE EFFECT OF HIGHWAY AND TRAFFIC ENGINEERING MEASURES ON ROAD SAFETY , 1997 .

[15]  J. Tanner,et al.  A PROBLEM IN THE COMBINATION OF ACCIDENT FREQUENCIES , 1958 .

[16]  E. Allain,et al.  Modèles linéaires généralisés appliqués à l'étude des nombres d'accidents sur des sites routiers: Le modèle de Poisson et ses extensions , 2001 .

[17]  A J Nicholson The randomness of accident counts. , 1986, Accident; analysis and prevention.

[18]  A. Essai,et al.  Estimation multidimensionnelle des contrôles et de l`effet moyen d`une mesure de sécurité routière , 2001 .

[19]  Morton B. Brown,et al.  Maximum likelihood methods for log-linear models when expected frequencies are subject to linear constraints , 1986 .

[20]  Marc J.I. Gaudry,et al.  Structural Road Accident Models , 2000 .

[21]  Assi N'Guessan,et al.  A covariance components estimation procedure when modelling a road safety measure in terms of linear constraints , 2005 .

[22]  S Danielsson A comparison of two methods for estimating the effect of a countermeasure in the presence of regression effects. , 1986, Accident; analysis and prevention.

[23]  Ahmed E. Radwan,et al.  Modeling traffic accident occurrence and involvement. , 2000, Accident; analysis and prevention.

[24]  Assi N'Guessan Constrained covariance matrix estimation in road accident modelling with Schur complements , 2003 .

[25]  Assi N'Guessan,et al.  A Schur complement approach for computing subcovariance matrices arising in a road safety measure modelling , 2005 .

[26]  M Beenstock,et al.  The effect of traffic policing on road safety in Israel. , 2001, Accident; analysis and prevention.

[27]  J. Aitchison,et al.  Maximum-Likelihood Estimation of Parameters Subject to Restraints , 1958 .

[28]  S. D. Silvey,et al.  The Lagrangian Multiplier Test , 1959 .

[29]  S Ginpil,et al.  The effectiveness of air bags. , 1999, Accident; analysis and prevention.

[30]  E Hauer Comparison groups in road safety studies: an analysis. , 1991, Accident; analysis and prevention.

[31]  S. Lassarre À propos des tests statistiques, sur variables poissonniennes, utilisés dans le domaine de la sécurité routière , 1977 .

[32]  T Brenac,et al.  The application of generalized linear models to the investigation of accident frequencies at road sites: the Poisson model and its extensions , 2001 .