Semi-Quantum Key Distribution Protocols with GHZ States

With the development of information security, quantum key distribution (QKD) has attracted much attention. Because of the lower requirement on quantum capability, more attention is paid to semi-quantum key distribution (SQKD). Two semi-quantum key distribution protocols based on GHZ states are proposed. The first protocol can achieve quantum key distribution between one classical party and one quantum party by cooperating with a third party with a strong quantum capability. Under the same conditions, the second one can achieve quantum key distribution between two classical parties. And the proposed semi-quantum key distribution protocols are free from some common attacks. It is significant for communication party without enough quantum devices to achieve quantum communication.

[1]  Dominic Mayers,et al.  Unconditional security in quantum cryptography , 1998, JACM.

[2]  Daesung Kwon,et al.  Quantum identity authentication with single photon , 2017, Quantum Information Processing.

[3]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[4]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[5]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[6]  Ran Gelles,et al.  Semi-Quantum Key Distribution , 2008, ArXiv.

[7]  Tal Mor,et al.  Boyer, Kenigsberg, and Mor Reply: , 2009 .

[8]  Yu-Guang Yang,et al.  Trojan-horse attacks on quantum key distribution with classical Bob , 2015, Quantum Inf. Process..

[9]  Arpita Maitra,et al.  Eavesdropping in semiquantum key distribution protocol , 2013, Inf. Process. Lett..

[10]  Hua Lu,et al.  QUANTUM KEY DISTRIBUTION WITH CLASSICAL ALICE , 2008 .

[11]  M. Luo Computationally Efficient Nonlinear Bell Inequalities for Quantum Networks. , 2017, Physical review letters.

[12]  Tal Mor,et al.  Quantum Key Distribution with Classical Bob , 2007, 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM'07).

[13]  P. Oscar Boykin,et al.  A Proof of the Security of Quantum Key Distribution , 1999, STOC '00.

[14]  Quan Zhang,et al.  Semiquantum Key Distribution Using Entangled States , 2011, 1104.1267.

[15]  Walter O. Krawec Security of a semi-quantum protocol where reflections contribute to the secret key , 2015, Quantum Inf. Process..

[16]  Tan Yong-Gang,et al.  Quantum key distribution series network protocol with M-classical Bobs , 2009 .

[17]  Tal Mor,et al.  A New and Feasible Protocol for Semi-quantum Key Distribution , 2017, ArXiv.

[18]  Yassine Hassouni,et al.  Cryptanalysis on authenticated semi-quantum key distribution protocol using Bell states , 2017, Quantum Inf. Process..

[19]  Fuguo Deng,et al.  Bidirectional quantum key distribution protocol with practical faint laser pulses , 2004 .

[20]  Tzonelih Hwang,et al.  Authenticated semi-quantum key distributions without classical channel , 2016, Quantum Inf. Process..

[21]  Walter O. Krawec Security proof of a semi-quantum key distribution protocol , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[22]  Qing-yu Cai,et al.  Comment on "Quantum key distribution with classical Bob". , 2009, Physical review letters.

[23]  Tzonelih Hwang,et al.  Mediated Semi‐Quantum Key Distribution Without Invoking Quantum Measurement , 2018 .

[24]  Tal Mor,et al.  Comment on "Semiquantum-key distribution using less than four quantum states" , 2010, 1010.2221.

[25]  Walter O. Krawec Restricted attacks on semi-quantum key distribution protocols , 2014, Quantum Inf. Process..

[26]  Jinye Peng,et al.  Efficient Quantum Private Communication Based on Dynamic Control Code Sequence , 2017 .

[27]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[28]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[29]  Chun-Wei Yang,et al.  Authenticated semi-quantum key distribution protocol using Bell states , 2014, Quantum Inf. Process..

[30]  Shengyu Zhang,et al.  Semiquantum key distribution without invoking the classical party’s measurement capability , 2015, Quantum Information Processing.

[31]  Shengyu Zhang,et al.  Measurement-device-independent semiquantum key distribution , 2018 .

[32]  Jun Zhu,et al.  QUANTUM IDENTITY AUTHENTICATION USING GAUSSIAN-MODULATED SQUEEZED STATES , 2011 .

[33]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[34]  Ahmed Farouk,et al.  New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states , 2017, Quantum Inf. Process..

[35]  Guihua Zeng,et al.  Cross-center quantum identification scheme based on teleportation and entanglement swapping , 2005 .

[36]  Walter O. Krawec Mediated semiquantum key distribution , 2014, 1411.6024.

[37]  Daowen Qiu,et al.  Semiquantum-key distribution using less than four quantum states , 2009 .