Versatile GaInO 3 -sheet with strain-tunable electronic structure, excellent mechanical flexibility, and an ideal gap for photovoltaics

[1]  Q. Guo,et al.  Electronic structure of β-Ga2O3 single crystals investigated by hard X-ray photoelectron spectroscopy , 2015 .

[2]  Fengnian Xia,et al.  Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. , 2010, Nano letters.

[3]  D. Nika,et al.  Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials , 2018, 1803.05532.

[4]  A. Janotti,et al.  ( In x Ga 1 − x ) 2 O 3 alloys for transparent electronics , 2015 .

[5]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[6]  Yugui Yao,et al.  Promising ferroelectricity in 2D group IV tellurides: a first-principles study , 2017, 1705.09029.

[7]  T. Minami New n-Type Transparent Conducting Oxides , 2000 .

[8]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[9]  Vei Wang,et al.  Structural, electronic, and optical properties of GaInO3: A hybrid density functional study , 2014 .

[10]  Kalyan Kumar Chattopadhyay,et al.  Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films , 2005 .

[11]  W. F. Peck,et al.  GaInO3: A new transparent conducting oxide , 1994 .

[12]  D. Rusakov,et al.  Structural evolution and properties of solid solutions of hexagonal InMnO3 and InGaO3. , 2011, Inorganic chemistry.

[13]  G. Shi,et al.  Two‐Dimensional Materials for Halide Perovskite‐Based Optoelectronic Devices , 2017, Advanced materials.

[14]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[15]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[16]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[17]  C. Jin,et al.  Atomic Defects in Two‐Dimensional Materials: From Single‐Atom Spectroscopy to Functionalities in Opto‐/Electronics, Nanomagnetism, and Catalysis , 2017, Advanced materials.

[18]  Y. Kawazoe,et al.  Penta-graphene: A new carbon allotrope , 2015, Proceedings of the National Academy of Sciences.

[19]  Liben Li,et al.  Two-dimensional carbon dioxide with high stability, a negative Poisson's ratio and a huge band gap. , 2018, Physical chemistry chemical physics : PCCP.

[20]  R. D. Shannon,et al.  Synthesis and structure of phases in the In2O3Ga2O3 system , 1968 .

[21]  G. Patzke,et al.  Investigations in the β-Ga2O3/In2O3 system: crystal growth of solid solutions , 2000 .

[22]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[23]  Bingbing Liu,et al.  Two-dimensional Penta-BP5 Sheets: High-stability, Strain-tunable Electronic Structure and Excellent Mechanical Properties , 2017, Scientific Reports.

[24]  Peter Reiche,et al.  Czochralski grown Ga2O3 crystals , 2000 .

[25]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[26]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[27]  Haijun Zhang,et al.  FeB6 Monolayers: The Graphene-like Material with Hypercoordinate Transition Metal. , 2016, Journal of the American Chemical Society.

[28]  Qianwang Chen,et al.  Elemental two-dimensional nanosheets beyond graphene. , 2017, Chemical Society reviews.