Dynkin operators, renormalization and the geometric $\beta$ function
暂无分享,去创建一个
[1] S. Agarwala. GEOMETRICALLY RELATING MOMENTUM CUT-OFF AND DIMENSIONAL REGULARIZATION , 2011, 1107.5533.
[2] F. Patras,et al. Logarithmic derivatives and generalized Dynkin operators , 2012, 1206.4990.
[3] S. Agarwala. A Perspective on Regularization and Curvature , 2009, 0909.4117.
[4] S. Agarwala. The geometric $\beta$-function in curved space-time under operator regularization , 2009, 0909.4122.
[5] S. Agarwala. The β-function over curved space-time under ζ-function regularization , 2009 .
[6] F. Patras,et al. A Lie Theoretic Approach to Renormalization , 2006, hep-th/0609035.
[7] W. D. Suijlekom. Renormalization of Gauge Fields: A Hopf Algebra Approach , 2006, hep-th/0610137.
[8] D. Manchon,et al. On matrix differential equations in the Hopf algebra of renormalization , 2006, math-ph/0606039.
[9] D. Kreimer. Anatomy of a gauge theory , 2005, hep-th/0509135.
[10] A. Connes,et al. Quantum fields and motives , 2005, hep-th/0504085.
[11] A. Connes,et al. Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem , 1999, hep-th/9912092.
[12] A. Connes,et al. Renormalization in Quantum Field Theory and the Riemann--Hilbert Problem II: The β-Function, Diffeomorphisms and the Renormalization Group , 1999, hep-th/9909126.
[13] Wilhelm von Waldenfels,et al. Zur Charakterisierung Liescher Elemente in freien Algebren , 1966 .