Repeated quantum error detection in a surface code

The realization of quantum error correction is an essential ingredient for reaching the full potential of fault-tolerant universal quantum computation. Using a range of different schemes, logical qubits that are resistant to errors can be redundantly encoded in a set of error-prone physical qubits. One such scalable approach is based on the surface code. Here we experimentally implement its smallest viable instance, capable of repeatedly detecting any single error using seven superconducting qubits—four data qubits and three ancilla qubits. Using high-fidelity ancilla-based stabilizer measurements, we initialize the cardinal states of the encoded logical qubit with an average logical fidelity of 96.1%. We then repeatedly check for errors using the stabilizer readout and observe that the logical quantum state is preserved with a lifetime and a coherence time longer than those of any of the constituent qubits when no errors are detected. Our demonstration of error detection with its resulting enhancement of the conditioned logical qubit coherence times is an important step, indicating a promising route towards the realization of quantum error correction in the surface code. In a surface code consisting of four data and three ancilla qubits, repeated error detection is demonstrated. The lifetime and coherence time of the logical qubit are enhanced over those of any of the constituent qubits when no errors are detected.

[1]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[2]  Jay M. Gambetta,et al.  Quantification and characterization of leakage errors , 2017, 1704.03081.

[3]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[4]  Jens Koch,et al.  Charging effects in the inductively shunted Josephson junction. , 2009, Physical review letters.

[5]  Kenneth R. Brown,et al.  2D Compass Codes , 2018, Physical Review X.

[6]  T Picot,et al.  Partial-measurement backaction and nonclassical weak values in a superconducting circuit. , 2013, Physical review letters.

[7]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[8]  Barbara M. Terhal,et al.  Fast, High-Fidelity Conditional-Phase Gate Exploiting Leakage Interference in Weakly Anharmonic Superconducting Qubits. , 2019, Physical review letters.

[9]  Andrew W. Cross,et al.  Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits. , 2017, Physical review letters.

[10]  L. Frunzio,et al.  Autonomously stabilized entanglement between two superconducting quantum bits , 2013, Nature.

[11]  L. DiCarlo,et al.  Deterministic entanglement of superconducting qubits by parity measurement and feedback , 2013, Nature.

[12]  M. S. Tame,et al.  Experimental demonstration of a graph state quantum error-correction code , 2014, Nature Communications.

[13]  Ling Hu,et al.  Quantum error correction and universal gate set operation on a binomial bosonic logical qubit , 2018, Nature Physics.

[14]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[15]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[16]  M. A. Rol,et al.  Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements , 2019, Science Advances.

[17]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[18]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[19]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[20]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[21]  Andrew W. Cross,et al.  Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits , 2019, Physical Review X.

[22]  L. DiCarlo,et al.  Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.

[23]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[24]  Xiaobo Zhu,et al.  Experimental verification of five-qubit quantum error correction with superconducting qubits , 2019 .

[25]  L. DiCarlo,et al.  Initialization by measurement of a superconducting quantum bit circuit. , 2012, Physical review letters.

[26]  A. Wallraff,et al.  Engineering cryogenic setups for 100-qubit scale superconducting circuit systems , 2018, EPJ Quantum Technology.

[27]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[28]  W Dür,et al.  Measurement-based quantum computation with trapped ions. , 2013, Physical review letters.

[29]  L. DiCarlo,et al.  Fast reset and suppressing spontaneous emission of a superconducting qubit , 2010, 1003.0142.

[30]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[31]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[32]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[33]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[34]  R. J. Schoelkopf,et al.  A stabilized logical quantum bit encoded in grid states of a superconducting cavity , 2019 .

[35]  C. K. Andersen,et al.  Entanglement Stabilization using Parity Detection and Real-Time Feedback in Superconducting Circuits , 2019 .

[36]  Todd A. Brun,et al.  Quantum Error Correction , 2019, Oxford Research Encyclopedia of Physics.

[37]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[38]  Austin G. Fowler,et al.  Experimental demonstration of topological error correction , 2009, Nature.

[39]  Zijun Chen,et al.  Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit. , 2015, Physical review letters.

[40]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[41]  C. K. Andersen,et al.  Rapid High-fidelity Multiplexed Readout of Superconducting Qubits , 2018, Physical Review Applied.

[42]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[43]  Caroline Figgatt,et al.  Fault-tolerant quantum error detection , 2016, Science Advances.

[44]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[45]  Maika Takita,et al.  Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. , 2016, Physical review letters.

[46]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[47]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[48]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[49]  M. A. Rol,et al.  Repeated quantum error correction on a continuously encoded qubit by real-time feedback , 2015, Nature Communications.

[50]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[51]  Vlad Negnevitsky,et al.  Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register , 2019, Quantum Information and Measurement (QIM) V: Quantum Technologies.

[52]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[53]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[54]  John Clarke,et al.  Heralded state preparation in a superconducting qubit. , 2012, Physical review letters.

[55]  V. Schmitt,et al.  Multiplexed Readout of Transmon Qubits with Josephson Bifurcation Amplifiers , 2014, 1409.5647.

[56]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[57]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.