Stability analysis and controller design for a linear system with Duhem hysteresis nonlinearity

In this paper, we investigate the stability of feedback interconnections between a linear system and a Duhem hysteresis operator, where the linear system satisfies either counter-clockwise (CCW) or clockwise (CW) input-output dynamics [1], [13]. More precisely, depending on the input-output dynamics of each system, we present sufficient conditions on the linear system that guarantee the stability of the closed-loop systems. Based on these results we introduce a control design methodology for stabilizing a linear plant with a counterclockwise Duhem hysteresis operator.

[1]  H. Ohmori,et al.  Modeling of MR damper with hysteresis for adaptive vibration control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[2]  Bayu Jayawardhana,et al.  Dissipativity of general Duhem hysteresis models , 2011, IEEE Conference on Decision and Control and European Control Conference.

[3]  Chih-Jer Lin,et al.  Precise positioning of piezo-actuated stages using hysteresis-observer based control , 2006 .

[4]  Hartmut Logemann,et al.  Systems with hysteresis in the feedback loop: existence, regularity and asymptotic behaviour of solutions , 2003 .

[5]  David Angeli,et al.  Multistability in Systems With Counter-Clockwise Input–Output Dynamics , 2007, IEEE Transactions on Automatic Control.

[6]  S. Fassois,et al.  Duhem modeling of friction-induced hysteresis , 2008, IEEE Control Systems.

[7]  JinHyoung Oh,et al.  Counterclockwise Dynamics of a Rate-Independent Semilinear Duhem Model , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[8]  Arjan van der Schaft,et al.  Positive feedback interconnection of Hamiltonian systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[9]  Jonathan P. How,et al.  A KYP lemma and invariance principle for systems with multiple hysteresis non-linearities , 2001 .

[10]  P. Dahl Solid Friction Damping of Mechanical Vibrations , 1976 .

[11]  Bayu Jayawardhana,et al.  On the characterization of the Duhem hysteresis operator with clockwise input-output dynamics , 2012, Syst. Control. Lett..

[12]  Isaak D. Mayergoyz,et al.  The science of hysteresis , 2005 .

[13]  Alexander Lanzon,et al.  Feedback Control of Negative-Imaginary Systems , 2010, IEEE Control Systems.

[14]  B. D. Coleman,et al.  A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials , 1986 .

[15]  Hartmut Logemann,et al.  Asymptotic Behaviour of Nonlinear Systems , 2004, Am. Math. Mon..

[16]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[17]  Bayu Jayawardhana,et al.  Sufficient conditions for dissipativity on Duhem hysteresis model , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[18]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.

[19]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[20]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[21]  David Angeli,et al.  Systems with counterclockwise input-output dynamics , 2006, IEEE Transactions on Automatic Control.

[22]  P. Olver Nonlinear Systems , 2013 .

[23]  A. Visintin Differential models of hysteresis , 1994 .

[24]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[25]  Ian R. Petersen,et al.  Feedback Control of Negative-Imaginary Systems: Large Flexible structures with colocated actuators and sensors , 2014, ArXiv.

[26]  Bayu Jayawardhana,et al.  Stability of systems with the Duhem hysteresis operator: The dissipativity approach , 2012, Autom..

[27]  Kirsten Morris,et al.  Generalized dissipation in hysteretic systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).