InP Photonic Integrated Circuits

InP is an ideal integration platform for optical generation, switching, and detection components operating in the range of 1.3-1.6 m wavelength, which is preferred for data transmission in the most prevalent silica-based optical fiber. We review the current state of the art in advanced InP photonic ICs.

[1]  M. Fisher,et al.  Large-scale photonic integrated circuits , 2005, 2011 ICO International Conference on Information Photonics.

[2]  C. Watson,et al.  One-step growth optical transceiver PIC in InP , 2009, 2009 35th European Conference on Optical Communication.

[3]  Larry A. Coldren,et al.  The world's first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[4]  Steve Grubb,et al.  10-Channel x 40Gb/s per Channel DQPSK Monolithically Integrated InP-Based Transmitter PIC , 2008 .

[5]  Mehrdad Ziari,et al.  Large-Scale Photonic Integrated Circuit Transmitters with Monolithically Integrated Semiconductor Optical Amplifiers , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[6]  Damien Lambert,et al.  III–V photonic integrated circuits and their impact on optical network architectures , 2008 .

[7]  S.J.B. Yoo,et al.  Optical-CDMA in InP , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  David F. Welch,et al.  Monolithic, 10 and 40 Channel InP Receiver Photonic Integrated Circuits with On-Chip Amplification , 2007, OFC 2007.

[9]  S. Murthy,et al.  40-Channel Transmitter and Receiver Photonic Integrated Circuits Operating at a per Channel Data Rate 12.5Gbit/s , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[10]  I. Andonovic,et al.  Polarization-Insensitive SOAs Using Strained Bulk Active Regions , 2006, Journal of Lightwave Technology.

[11]  S. Murthy,et al.  Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s , 2006 .

[12]  S. Murthy,et al.  Volume manufacturing and deployment of large-scale photonic integrated circuits , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[13]  S. Murthy,et al.  Large-scale DWDM photonic integrated circuits: a manufacturable and scalable integration platform , 2005, 2005 IEEE LEOS Annual Meeting Conference Proceedings.

[14]  Steve Grubb,et al.  400 Gbit/s (10 channel × 40 Gbit/s) DWDM photonic integrated circuits , 2005 .

[15]  Radhakrishnan Nagarajan,et al.  400 Gb/s (10-channel x 40 Gb/s) DWDM Photonic Integrated Circuits , 2005 .

[16]  V. Lal,et al.  Monolithically integrated Mach-Zehnder interferometer wavelength converter and widely tunable laser in InP , 2003, IEEE Photonics Technology Letters.

[17]  Y. Kotaki,et al.  High-output-power polarization-insensitive semiconductor optical amplifier , 2003 .

[18]  Adam Densmore,et al.  44-channel optical power monitor based on an echelle grating demultiplexer and a waveguide photodetector array monolithically integrated on an InP substrate , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[19]  Larry A. Coldren,et al.  A quantum-well-intermixing process for wavelength-agile photonic integrated circuits , 2002 .

[20]  Anand Gopinath,et al.  Polarization-insensitive quantum-well semiconductor optical amplifiers , 2002 .

[21]  Yuzo Yoshikuni,et al.  Semiconductor arrayed waveguide gratings for photonic integrated devices , 2002 .

[22]  Yoshio Noguchi,et al.  Multi-channel modulation in a DWDM monolithic photonic integrated circuit , 2002, Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307).

[23]  Y. Shibata,et al.  Influence of buried structure on polarization sensitivity in strained bulk semiconductor optical amplifiers , 2002 .

[24]  F. G. Storz,et al.  High-gain mode-adapted semiconductor optical amplifier with 12.4-dBm saturation output power at 1550 nm , 2002 .

[25]  J. H. den Besten,et al.  Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process , 2002, IEEE Photonics Technology Letters.

[26]  Hiroyuki Ishii,et al.  Monolithically integrated 64-channel WDM channel selector on InP substrate , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[27]  L.A. Coldren,et al.  Monolithic tunable diode lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  K. Okamoto,et al.  Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides , 2000, IEEE Photonics Technology Letters.

[29]  R. Tucker,et al.  Theory and Measurement Techniques for the Noise Figure of Optical Amplifiers , 2000 .

[30]  K. Okamoto Recent progress of integrated optics planar lightwave circuits , 1999 .

[31]  M.K. Smit,et al.  Polarization independent dilated WDM cross-connect on InP , 1999, IEEE Photonics Technology Letters.

[32]  Jean-Yves Emery,et al.  High performance 1.55 /spl mu/m polarisation-insensitive semiconductor optical amplifier based on low-tensile-strained bulk GaInAsP , 1997 .

[33]  Mk Meint Smit,et al.  Compact low loss 8x10 GHz polarisation independent WDM receiver , 1996 .

[34]  Mk Meint Smit,et al.  PHASAR-based WDM-devices: Principles, design and applications , 1996 .

[35]  M. Zirngibl,et al.  Polarisation compensated waveguide grating router on InP , 1995 .

[36]  M. Zirngibl,et al.  WDM receiver by monolithic integration of an optical preamplifier, waveguide grating router and photodiode array , 1995 .

[37]  L. Tiemeijer,et al.  Strained-layer InGaAs(P) quantum well semiconductor lasers and semiconductor laser amplifiers , 1995 .

[38]  Yoshio Noguchi,et al.  Polarization-insensitive optical amplifier with tensile-strained-barrier MQW structure , 1994 .

[39]  L. F. Tiemeijer,et al.  Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers , 1994 .

[40]  한정희,et al.  에르븀 첨가 광섬유증폭기의 특성측정 ( Characterization of Erbium-Doped Filber Amplifier ) , 1993 .

[41]  U. Koren,et al.  1.5 mu m multiquantum-well semiconductor optical amplifier with tensile and compressively strained wells for polarization-independent gain , 1993, IEEE Photonics Technology Letters.

[42]  Uziel Koren,et al.  Semiconductor photonic integrated circuits , 1991, Integrated Photonics Research.

[43]  Osamu Wada Invited Paper Recent Progress In Optoelectronic Integrated Circuits (OEICs) , 1987, Other Conferences.

[44]  Osamu Wada,et al.  Recent progress in optoelectric integrated circuits (OEIC's) , 1986 .

[45]  Y. Sasai,et al.  Monolithic integration of an InGaAsP/InP laser diode with heterojunction bipolar transistors , 1984 .

[46]  I. Hayashi,et al.  JUNCTION LASERS WHICH OPERATE CONTINUOUSLY AT ROOM TEMPERATURE , 1970 .

[47]  Stewart E. Miller,et al.  Integrated optics: An introduction , 1969 .