Influence of storage time and nutrient medium on recovery of fibroblast-like cells from refrigerated collared peccary (Pecari tajacu Linnaeus, 1758) skin

[1]  N. Wani,et al.  Source, treatment and type of nuclear donor cells influences in vitro and in vivo development of embryos cloned by somatic cell nuclear transfer in camel (Camelus dromedarius). , 2018, Theriogenology.

[2]  A. A. Borges,et al.  Influence of Cryopreservation Solution on the In Vitro Culture of Skin Tissues Derived from Collared Peccary (Pecari tajacu Linnaeus, 1758). , 2018, Biopreservation and biobanking.

[3]  F. OliveiraMoacir,et al.  Influence of Cryopreservation Solution on the In Vitro Culture of Skin Tissues Derived from Collared Peccary (Pecari tajacu Linnaeus, 1758) , 2017 .

[4]  M. F. Oliveira,et al.  Caracterização histomorfológica do sistema tegumentar auricular de cateto - Pecari tajacu Linnaeus, 1758) , 2017 .

[5]  G. L. Lima,et al.  Conservation of somatic tissue derived from collared peccaries (Pecari tajacu Linnaeus, 1758) using direct or solid-surface vitrification techniques , 2017, Cytotechnology.

[6]  M. Nasr-Esfahani,et al.  Interspecies somatic cell nuclear transfer in Asiatic cheetah using nuclei derived from post-mortem frozen tissue in absence of cryo-protectant and in vitro matured domestic cat oocytes. , 2017, Theriogenology.

[7]  B. Walcott,et al.  Recovery of proliferative cells up to 15- and 49-day postmortem from bovine skin stored at 25°C and 4°C, respectively , 2017 .

[8]  A. A. Borges,et al.  In vitro culture of somatic cells derived from ear tissue of collared peccary ( Pecari tajacu Linnaeus , 1758 ) in medium with different requirements , 2017 .

[9]  M. F. Oliveira,et al.  Cultivo in vitro de células somáticas derivadas de tecido auricular de cateto (Pecari tajacu Linnaeus, 1758) em meio com diferentes requerimentos , 2016 .

[10]  Xiao-Ming Ma,et al.  1719 Recovery of fibroblast cells up to 65 d of postmortem storage of sheep ear skin at 4°C. , 2016 .

[11]  Mahipal Singh,et al.  Recovery of fibroblast-like cells after 160 days of postmortem storage of goat skin tissues in refrigerated media. , 2015 .

[12]  B. Boekema,et al.  Evaluation of saline, RPMI and DMEM/F12 for storage of split-thickness skin grafts. , 2015, Burns : journal of the International Society for Burn Injuries.

[13]  Charles U. Okonkwo,et al.  Recovery of fibroblast-like cells from refrigerated goat skin up to 41 d of animal death , 2014, In Vitro Cellular & Developmental Biology - Animal.

[14]  T. Takebe,et al.  Effect of preservation conditions on cartilage tissue for cell transplantation. , 2014, Transplantation proceedings.

[15]  A. A. Borges,et al.  ISOLAMENTO E CARACTERIZAÇÃO DE CÉLULAS DOADORAS DERIVADAS DA PELE PARA A TRANSFERÊNCIA NUCLEAR (Isolation and characterization of skin-derived donor cells for nuclear transfer) , 2014 .

[16]  Ying-jie Deng,et al.  Overexpression of CDKN1B inhibits fibroblast proliferation in a rabbit model of experimental glaucoma filtration surgery. , 2013, Investigative ophthalmology & visual science.

[17]  S. Uemoto,et al.  Improved hypothermic short-term storage of isolated mouse islets by adding serum to preservation solutions , 2013, Islets.

[18]  D. Teixeira,et al.  Analysis of factors contributing to the efficiency of the in vitro production of transgenic goat embryos (Capra hircus) by handmade cloning (HMC) , 2013 .

[19]  J. Cordeiro,et al.  Avaliação do risco de extinção do cateto Pecari tajacu Linnaeus, 1758, no Brasil. , 2012 .

[20]  T. Akkoç,et al.  Tissue cryobanking for conservation programs: effect of tissue type and storage time after death , 2012, Cell and Tissue Banking.

[21]  P. Verma,et al.  Inducing pluripotency in somatic cells from the snow leopard (Panthera uncia), an endangered felid. , 2012, Theriogenology.

[22]  Y. Demir,et al.  Evaluation of amniotic fluid as a skin graft storage media compared with RPMI and saline. , 2011, Burns : journal of the International Society for Burn Injuries.

[23]  M. A. Simón,et al.  Cryobanking the genetic diversity in the critically endangered Iberian lynx (Lynx pardinus) from skin biopsies. Investigating the cryopreservation and culture ability of highly valuable explants and cells. , 2011, Cryobiology.

[24]  Mahipal Singh,et al.  In vitro culture of fibroblast-like cells from postmortem skin of Katahdin sheep stored at 4°C for different time intervals , 2011, In Vitro Cellular & Developmental Biology - Animal.

[25]  C. Elie,et al.  Viability of cryopreserved human skin allografts: effects of transport media and cryoprotectant , 2011, Cell and Tissue Banking.

[26]  Douglas G. Walker,et al.  Postmortem interval effect on RNA and gene expression in human brain tissue , 2011, Cell and Tissue Banking.

[27]  Jun Wu,et al.  The viability change of pigskin in vitro. , 2010, Burns : journal of the International Society for Burn Injuries.

[28]  F. Martínez,et al.  Developing biological resource banks as a supporting tool for wildlife reproduction and conservation The Iberian lynx bank as a model for other endangered species. , 2009, Animal reproduction science.

[29]  Selene Siqueira da Cunha Nogueira,et al.  Criação comercial de caititus ("Pecari tajacu"): uma alternativa para o agronegócio , 2009 .

[30]  Heribelt Tovar,et al.  Cold storage of biopsies from wild endangered native Chilean species in field conditions and subsequent isolation of primary culture cell lines , 2008, In Vitro Cellular & Developmental Biology - Animal.

[31]  M. Muñoz,et al.  Cryopreservation of Brown Bear Skin Biopsies , 2008 .

[32]  Luis A.B. Peres,et al.  Padronização do Teste do MTT em Modelo de Preservação a Frio como Instrumento de Avaliação da Viabilidade Celular Renal , 2008 .

[33]  L. Peres,et al.  Standardization of MTT-Assay in a Cold Preservation Model as a Tool for Assessment of Kidney Cell Viability , 2008 .

[34]  T. Churchill,et al.  Beneficial effects of supplemental buffer and substrate on energy metabolism during small bowel storage. , 2004, Cryobiology.

[35]  R. Bodmer Influence of digestive morphology on resource partitioning in Amazonian ungulates , 2004, Oecologia.

[36]  M. A. Silvestre,et al.  Rabbit and pig ear skin sample cryobanking: effects of storage time and temperature of the whole ear extirpated immediately after death. , 2003, Theriogenology.

[37]  W. Strober Trypan blue exclusion test of cell viability. , 2001, Current protocols in immunology.

[38]  N. Gibran,et al.  Effect of storage and preservation methods on viability in transplantable human skin allografts. , 2000, Burns : journal of the International Society for Burn Injuries.

[39]  M. West,et al.  Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. , 2000, Cloning.

[40]  C. R. Costa,et al.  Livro vermelho dos mamíferos brasileiros ameaçados de extinçao , 1994 .

[41]  P. Madden,et al.  Hypothermic preservation of corneas in a hyperkalaemic solution (CPTES): II. Extended storage in the presence of chondroitin sulphate. , 1989, The British journal of ophthalmology.

[42]  S. Williams,et al.  Genotype and the cryopreservation process affect the levels of aneuploidy and chromosome breakage in cultured human fibroblasts. , 1989, Genome.

[43]  T. Mosmann Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. , 1983, Journal of immunological methods.

[44]  M. Matsuo,et al.  Aging of chick embryo fibroblasts in vitro—IV. Doubling potential and metabolic time , 1980, Experimental Gerontology.