Graph theoretic independence and critical independent sets

The independence number of a graph is the maximum number of pairwise nonadjacent vertices of the graph. New bounds are presented for this NP-hard invariant, new algorithms for calculating it, as well as new theoretical techniques for investigating maximum independent sets in a graph. These include: 1. A new, short proof of Graffiti's conjectured lower bound for the independence number in terms of the number of cut vertices of the graph. 2. A new proof of an upper bound for the independence number in terms of the number of cut vertices, and (together with G. Henry, R. Pepper, and D. Sexton) the characterization of those graphs where equality of this bound holds. 3. A faster version of Tarjan and Trojanowski's algorithm for finding maximum independent sets in fullerenes, together with a previously unreported computation adding to the evidence that minimizing independence is the best statistical predictor of fullerene stability. 4. A characterization of those graphs whose independence number equals its radius, which was an open problem mentioned in a 1986 paper of Fajtlowicz and Waller. 5. A new sufficient condition, following a conjecture of Graffiti, for the existence of a Hamiltonian cycle in a graph. 6. A characterization of those graphs whose independence number equals its annihilation number, which was an open problem in Pepper's 2004 dissertation 7. A polynomial-time algorithm for finding maximum cardinality critical independent sets, which was an open problem of Butenko and Trukhanov's 2005 preprint vii on using critical independent sets in order to speed-up finding maximum independent sets. 8. The invention of the critical independence number, a new polynomial-time computable lower-bound for the independence number, and a polynomial-time computable characterization of the graphs where these invariants are equal. 9. A decomposition of a general graph into two unique subgraphs, such that the independence numbers of these graphs are additive, and where one of these independence number computations can be done in polynomial-time. 10. A new and simple characterization of Konig-Egervary graphs, resulting from a surprising conjecture of Graffiti.pc.

[1]  Béla Bollobás,et al.  Graphs of Extremal Weights , 1998, Ars Comb..

[2]  William Staton,et al.  Graphs with unique maximum independent sets , 1985, Discret. Math..

[3]  Hao Wang,et al.  Toward Mechanical Mathematics , 1960, IBM J. Res. Dev..

[4]  Nenad Trinajstić,et al.  Graph theory and molecular orbitals. The loop rule , 1973 .

[5]  A. Balaban,et al.  Topological Indices and Related Descriptors in QSAR and QSPR , 2003 .

[6]  Béla Bollobás,et al.  Random Graphs , 1985 .

[7]  Sergiy Butenko,et al.  Using critical sets to solve the maximum independent set problem , 2007, Oper. Res. Lett..

[8]  Siemion Fajtlowicz A characterization of radius-critical graphs , 1988, J. Graph Theory.

[9]  Frank Harary,et al.  Graph Theory , 2016 .

[10]  A. Nijenhuis Combinatorial algorithms , 1975 .

[11]  Alexander A. Ageev On Finding Critical Independent and Vertex Sets , 1994, SIAM J. Discret. Math..

[12]  Josiah Royce,et al.  The psychology of invention. , 1898 .

[13]  László Lovász,et al.  The rank and size of graphs , 1996 .

[14]  P. Hansen,et al.  Polyenes with maximum HOMO–LUMO gap ☆ , 2001 .

[15]  Craig E. Larson,et al.  Graph-Theoretic Independence as a Predictor of Fullerene Stability , 2003 .

[16]  S. Fajtlowicz Toward Fully Automated Fragments of Graph Theory , II . , 2003 .

[17]  Odile Favaron,et al.  On the residue of a graph , 1991, J. Graph Theory.

[18]  Howard E. Simmons,et al.  The structures of molecular topological spaces , 1980 .

[19]  Xiaodong Zhang On the two conjectures of Graffiti , 2004 .

[20]  J. A. Bondy,et al.  Independent Sets and Cliques , 1976 .

[21]  P. W. Fowler Fullerene graphs with more negative than positiveeigenvalues: The exceptions that prove the rule of electrondeficiency? , 1997 .

[22]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[23]  Raphael Yuster,et al.  Some remarks on domination , 2004 .

[24]  Ermelinda DeLaViña,et al.  On Some Conjectures of Griggs and Graffiti , 2001, Graphs and Discovery.

[25]  Robert W. Deming,et al.  Independence numbers of graphs-an extension of the Koenig-Egervary theorem , 1979, Discret. Math..

[26]  三浦 玄,et al.  University of Houston 留学記 , 2007 .

[27]  Patrick W. Fowler,et al.  Independence number and fullerene stability , 2007 .

[28]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[29]  Godfrey H. Hardy,et al.  A mathematician's apology , 1941 .

[30]  Hao Wang,et al.  Computer Theorem Proving and Artificial Intelligence , 1990 .

[31]  H. Sachs,et al.  On Maximum Matchings and Eigenvalues of Benzenoid Graphs , 2005 .

[32]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[33]  Cun-Quan Zhang,et al.  Finding Critical Independent Sets and Critical Vertex Subsets are Polynomial Problems , 1990, SIAM J. Discret. Math..

[34]  F. K. Hanna,et al.  AM: A Case Study in AI Methodology , 1984, Artif. Intell..

[35]  Hugh Aldersey-Williams,et al.  The most beautiful molecule , 1994 .

[36]  Douglas B. Lenat,et al.  The Nature of Heuristics , 1982, Artif. Intell..

[37]  Douglas B. Lenat,et al.  The ubiquity of discovery , 1993, AFIPS National Computer Conference.

[38]  Douglas J. Klein,et al.  Favorable structures for higher fullerenes , 1992 .

[39]  Paul Erdös,et al.  A note on Hamiltonian circuits , 1972, Discret. Math..

[40]  N. Biggs,et al.  Graph Theory 1736-1936 , 1976 .

[41]  Douglas B. Lenat Computer Software for Intelligent Systems. , 1984 .

[42]  J. Hadamard,et al.  The Psychology of Invention in the Mathematical Field. , 1945 .

[43]  Siemion Fajtlowicz,et al.  On conjectures of Graffiti , 1988, Discret. Math..

[44]  S. Smale Mathematical problems for the next century , 1998 .

[45]  Douglas B. Lenat,et al.  The Role of Heuristics in Learning by Discovery: Three Case Studies , 1983 .

[46]  Daniel J. Kleitman,et al.  Independence and the Havel-Hakimi residue , 1994, Discret. Math..

[47]  Michael E. Saks,et al.  Maximum induced trees in graphs , 1986, J. Comb. Theory, Ser. B.

[48]  Paul Erdös,et al.  Degree sequences in triangle-free graphs , 1991, Discret. Math..

[49]  J. Spencer,et al.  On the mean distance between points of a graph , 1988 .

[50]  Krishnan Raghavachari,et al.  Ground state of C84: two almost isoenergetic isomers , 1992 .

[51]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[52]  Ermelinda DeLaViña,et al.  Some History of the Development of Graffiti , 2001, Graphs and Discovery.

[53]  Uppaluri S. R. Murty,et al.  Graph Theory with Applications , 1978 .

[54]  Douglas B. Lenat,et al.  Automated Theory Formation in Mathematics , 1977, IJCAI.

[55]  B. Hayes Graph Theory in Practice: Part II , 2000, American Scientist.

[56]  Fan Chung Graham,et al.  The average distance and the independence number , 1988, Journal of Graph Theory.

[57]  Ludek Kucera,et al.  Combinatorial Algorithms , 1989 .

[58]  Douglas B. Lenat,et al.  Theory Formation by Heuristic Search , 1983, Artificial Intelligence.

[59]  Douglas B. Lenat,et al.  EURISKO: A Program That Learns New Heuristics and Domain Concepts , 1983, Artif. Intell..

[60]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[61]  Ryan D. Pepper On New Didactics of Mathematics: Learning Graph Theory via Graffiti , 2001, Graphs and Discovery.

[62]  Pierre Hansen,et al.  C60Br24 as a chemical illustration of graph theoretical independence , 1998 .

[63]  Patrick W. Fowler,et al.  Independent sets and the prediction of addition patterns for higher fullerenes , 1999 .

[64]  Craig E. Larson,et al.  A Survey of Research in Automated Mathematical Conjecture-Making , 2001, Graphs and Discovery.

[65]  Craig E. Larson,et al.  Intelligent Machinery and Mathematical Discovery , 1999 .