The Impact of Z_score on Twitter Sentiment Analysis

Twitter has become more and more an important resource of user-generated data. Sentiment Analysis in Twitter is interesting for many applications and objectives. In this paper, we propose to exploit some features which can be useful for this task; the main contribution is the use of Z-scores as features for sentiment classification in addition to pre-polarity and POS tags features. Our experiments have been evaluated using the test data provided by SemEval 2013 and 2014. The evaluation demonstrates that Z_scores features can significantly improve the prediction performance.

[1]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[2]  Thomas Gottron,et al.  Bad news travel fast: a content-based analysis of interestingness on Twitter , 2011, WebSci '11.

[3]  Bernardo A. Huberman,et al.  Predicting the Future with Social Media , 2010, Web Intelligence.

[4]  Long Jiang,et al.  User-level sentiment analysis incorporating social networks , 2011, KDD.

[5]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[6]  Jason Baldridge,et al.  Twitter Polarity Classification with Label Propagation over Lexical Links and the Follower Graph , 2011, ULNLP@EMNLP.

[7]  Johanna D. Moore,et al.  Twitter Sentiment Analysis: The Good the Bad and the OMG! , 2011, ICWSM.

[8]  Frédéric Béchet,et al.  Experiments with DBpedia, WordNet and SentiWordNet as resources for sentiment analysis in micro-blogging , 2013, *SEMEVAL.

[9]  Hongchul Lee,et al.  Sentiment analysis of twitter audiences: Measuring the positive or negative influence of popular twitterers , 2012, J. Assoc. Inf. Sci. Technol..

[10]  Harith Alani,et al.  Semantic Sentiment Analysis of Twitter , 2012, SEMWEB.

[11]  Jacques Savoy,et al.  Opinion Detection by Combining Machine Learning & Linguistic Tools , 2010, NTCIR.

[12]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[13]  Pushpak Bhattacharyya,et al.  TwiSent: a multistage system for analyzing sentiment in twitter , 2012, CIKM '12.

[14]  Rajiv Ramnath,et al.  Towards building large-scale distributed systems for twitter sentiment analysis , 2012, SAC '12.

[15]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[16]  Preslav Nakov,et al.  SemEval-2014 Task 9: Sentiment Analysis in Twitter , 2014, *SEMEVAL.

[17]  Pushpak Bhattacharyya,et al.  C-Feel-It: A Sentiment Analyzer for Micro-blogs , 2011, ACL.

[18]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[19]  Huan Liu,et al.  Exploiting social relations for sentiment analysis in microblogging , 2013, WSDM.

[20]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[21]  Junlan Feng,et al.  Robust Sentiment Detection on Twitter from Biased and Noisy Data , 2010, COLING.

[22]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.