Effects of salts and ionophores on proline transport in a moderately halopholic halotolerant bacterium.

[1]  J. Lanyi Coupling of aspartate and serine transport to the transmembrane electrochemical gradient for sodium ions in Halobacterium halobium. Translocation stoichiometries and apparent cooperativity. , 1978, Biochemistry.

[2]  J. Thompson,et al.  Osmotic Effects on Membrane Permeability in a Marine Bacterium , 1978, Journal of bacteriology.

[3]  I. Friedberg The effect of ionophores on phosphate and arsenate transport in Micrococcus lysodeikticus , 1977, FEBS letters.

[4]  H. Kaback,et al.  Sodium-dependent methyl 1-thio-beta-D-galactopyranoside transport in membrane vesicles isolated from Salmonella typhimurium. , 1977, Biochemistry.

[5]  T. Tsuchiya,et al.  Co-transport of Na+ and methul-beta-D-thiogalactopyranoside mediated by the melibiose transport system of Escherichia coli. , 1977, Biochemical and biophysical research communications.

[6]  S. Caplan,et al.  Light-depending rubidium transport in intact Halobacterium halobium cells. , 1977, Biochimica et biophysica acta.

[7]  H. Kaback,et al.  The electrochemical proton gradient in Escherichia coli membrane vesicles. , 1977, Biochemistry.

[8]  H. Kaback,et al.  The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles. , 1977, Biochemistry.

[9]  S. Caplan,et al.  An estimation of the light-induced electrochemical potential difference of protons across the membrane of Halobacterium halobium. , 1976, Biochimica et biophysica acta.

[10]  E. Padan,et al.  The proton electrochemical gradient in Escherichia coli cells. , 1976, European journal of biochemistry.

[11]  C. Gómez-Lojero,et al.  Charge transfer mediated by nigericin in black lipid membranes , 1976, Journal of bioenergetics.

[12]  Y. Avi-Dor,et al.  Betaine-induced stimulation of respiration at high osmolarities in a halotolerant bacterium. , 1975, The Biochemical journal.

[13]  I. West,et al.  Proton-coupled β-galactoside translocation in non-metabolizingEscherichia coli , 1972, Journal of bioenergetics.

[14]  H. Lardy,et al.  Potassium-specific Uncoupling by Nigericin , 1971 .

[15]  Y. Avi-Dor,et al.  Studies on halotolerance in a moderately halophilic bacterium. Effect of betaine on salt resistance of the respiratory system. , 1968, The Biochemical journal.

[16]  L. Leive Studies on the permeability change produced in coliform bacteria by ethylenediaminetetraacetate. , 1968, The Journal of biological chemistry.

[17]  J. Christian,et al.  The sodium and potassium content of non-halophilic bacteria in relation to salt tolerance. , 1961, Journal of general microbiology.

[18]  John H. Luft,et al.  IMPROVEMENTS IN EPOXY RESIN EMBEDDING METHODS , 1961, The Journal of biophysical and biochemical cytology.

[19]  Oliver H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[20]  F. Harold Membranes and Energy Transduction in Bacteria1 1Abbreviations: Δψ, membrane potential; ΔpH, pH gradient; Δp, proton-motive force. These are related by: Δp = Δψ - (23RT/F) ΔpH ≅ Δψ - 60 ΔpH. ANS, l-anilino-8-naphthalene sulfonate; DCCD, N, N'-dicyclohexylcarbodiimide; CCCP, carbonylcyanide-m-chloroph , 1977 .

[21]  W. Hamilton Energy Coupling in Microbial Transport , 1975 .

[22]  P. Mitchell Performance and conservation of osmotic work by proton-coupled solute porter systems , 1973, Journal of bioenergetics.

[23]  H. Larsen,et al.  Biochemical Aspects of Extreme Halophilism , 1967 .