Achieving high instruction cache performance with an optimizing compiler

Increasing the execution power requires a high instruction issue bandwidth, and decreasing instruction encoding and applying some code improving techniques cause code expansion. Therefore, the instruction memory hierarchy performance has become an important factor of the system performance. An instruction placement algorithm has been implemented in the IMPACT-I (Illinois Microarchitecture Project using Advanced Compiler Technology - Stage I) C compiler to maximize the sequential and spatial localities, and to minimize mapping conflicts. This approach achieves low cache miss ratios and low memory traffic ratios for small, fast instruction caches with little hardware overhead. For ten realistic UNIX* programs, we report low miss ratios (average 0.5%) and low memory traffic ratios (average 8%) for a 2048-byte, direct-mapped instruction cache using 64-byte blocks. This result compares favorably with the fully associative cache results reported by other researchers. We also present the effect of cache size, block size, block sectoring, and partial loading on the cache performance. The code performance with instruction placement optimization is shown to be stable across architectures with different instruction encoding density.

[1]  Alan Jay Smith Cache Evaluation and the Impact of Workload Choice , 1985, ISCA.

[2]  Norman P. Jouppi,et al.  MIPS: a VLSI processor architecture , 1981 .

[3]  Alan Jay Smith,et al.  Experimental evaluation of on-chip microprocessor cache memories , 1984, ISCA 1984.

[4]  George Radin,et al.  The 801 minicomputer , 1982, ASPLOS I.

[5]  Wen-mei W. Hwu,et al.  Trace Selection For Compiling Large C Application Programs To Microcode , 1988, [1988] Proceedings of the 21st Annual Workshop on Microprogramming and Microarchitecture - MICRO '21.

[6]  John Paul Shen,et al.  Organization of array data for concurrent memory access , 1988, MICRO 1988.

[7]  Richard M. Russell,et al.  The CRAY-1 computer system , 1978, CACM.

[8]  Mark Horowitz,et al.  Architectural tradeoffs in the design of MIPS-X , 1987, ISCA '87.

[9]  Duncan H. Lawrie,et al.  Access and Alignment of Data in an Array Processor , 1975, IEEE Transactions on Computers.

[10]  Domenico Ferrari,et al.  Improving locality by critical working sets , 1974, CACM.

[11]  Carlo H. Séquin,et al.  A VLSI RISC , 1982, Computer.

[12]  Robert P. Colwell,et al.  A VLIW architecture for a trace scheduling compiler , 1987, ASPLOS 1987.

[13]  Janak H. Patel,et al.  Performance evaluation of on-chip register and cache organizations , 1988, ISCA '88.

[14]  Gregory J. Chaitin,et al.  Register allocation & spilling via graph coloring , 1982, SIGPLAN '82.

[15]  Wen-mei W. Hwu,et al.  Inline function expansion for compiling C programs , 1989, PLDI '89.

[16]  Michael J. Flynn,et al.  Performance trade-offs for microprocessor cache memories , 1988, IEEE Micro.

[17]  C.L. Mitchell,et al.  A workbench for computer architects , 1988, IEEE Design & Test of Computers.

[18]  Scott McFarling,et al.  Program optimization for instruction caches , 1989, ASPLOS III.

[19]  John R. Ellis,et al.  Bulldog: A Compiler for VLIW Architectures , 1986 .

[20]  Stephen J. Hartley Compile-Time Program Restructuring in Multiprogrammed Virtual Memory Systems , 1988, IEEE Trans. Software Eng..

[21]  Thomas R. Gross,et al.  Postpass Code Optimization of Pipeline Constraints , 1983, TOPL.

[22]  Mark Horowitz,et al.  Performance tradeoffs in cache design , 1988, ISCA '88.

[23]  Robert P. Colwell,et al.  A VLIW architecture for a trace scheduling compiler , 1987, ASPLOS.

[24]  John L. Hennessy,et al.  Register allocation by priority-based coloring , 1984, SIGPLAN '84.

[25]  John Paul Shen,et al.  Organization Of Array Data For Concurrent Memory Access , 1988, [1988] Proceedings of the 21st Annual Workshop on Microprogramming and Microarchitecture - MICRO '21.

[26]  Alan Jay Smith,et al.  Cache Memories , 1982, CSUR.

[27]  Alan Jay Smith,et al.  Line (Block) Size Choice for CPU Cache Memories , 1987, IEEE Transactions on Computers.

[28]  Joseph A. Fisher,et al.  Trace Scheduling: A Technique for Global Microcode Compaction , 1981, IEEE Transactions on Computers.