Voronoi diagrams and arrangements

We propose a uniform and general framework for defining and dealing with Voronoi diagrams. In this framework a Voronoi diagram is a partition of a domainD induced by a finite number of real valued functions onD. Valuable insight can be gained when one considers how these real valued functions partitionD ×R. With this view it turns out that the standard Euclidean Voronoi diagram of point sets inRd along with its order-k generalizations are intimately related to certain arrangements of hyperplanes. This fact can be used to obtain new Voronoi diagram algorithms. We also discuss how the formalism of arrangements can be used to solve certain intersection and union problems.

[1]  Raimund Seidel,et al.  Constructing arrangements of lines and hyperplanes with applications , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[2]  Hiroshi Imai,et al.  Voronoi Diagram in the Laguerre Geometry and its Applications , 1985, SIAM J. Comput..

[3]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[4]  Chak-Kuen Wong,et al.  Voronoi Diagrams in L1 (Linfty) Metrics with 2-Dimensional Storage Applications , 1980, SIAM J. Comput..

[5]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[6]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[7]  Raimund Seidel,et al.  Constructing Arrangements of Lines and Hyperplanes with Applications , 1986, SIAM J. Comput..

[8]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[9]  R. Seidel A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .

[10]  Richard Cole,et al.  Geometric retrieval problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[11]  David G. Kirkpatrick,et al.  Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[12]  Herbert Edelsbrunner,et al.  On the Number of Line Separations of a Finite Set in the Plane , 1985, J. Comb. Theory, Ser. A.

[13]  D. T. Lee,et al.  Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.

[14]  Franz Aurenhammer,et al.  An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..

[15]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[16]  D. T. Lee,et al.  Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..

[17]  Kevin Q. Brown Fast Intersection of Half Spaces. , 1978 .

[18]  P. Erdös,et al.  Dissection Graphs of Planar Point Sets , 1973 .

[19]  Robert L. Scot Drysdale,et al.  Generalized Voronoi diagrams and geometric searching , 1979 .

[20]  David E. Muller,et al.  Finding the Intersection of n Half-Spaces in Time O(n log n) , 1979, Theor. Comput. Sci..

[21]  Der-Tsai Lee On Finding K Nearest Neighbors in the Plane , 1976 .

[22]  Kevin Q. Brown Geometric transforms for fast geometric algorithms , 1979 .

[23]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[24]  B. Grünbaum Arrangements and Spreads , 1972 .

[25]  Robert L. Scot Drysdale,et al.  Voronoi diagrams based on convex distance functions , 1985, SCG '85.

[26]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[27]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..