Linear Time Euclidean Distance Algorithms

Two linear time (and hence asymptotically optimal) algorithms for computing the Euclidean distance transform of a two-dimensional binary image are presented. The algorithms are based on the construction and regular sampling of the Voronoi diagram whose sites consist of the unit (feature) pixels in the image. The first algorithm, which is of primarily theoretical interest, constructs the complete Voronoi diagram. The second, more practical, algorithm constructs the Voronoi diagram where it intersects the horizontal lines passing through the image pixel centers. Extensions to higher dimensional images and to other distance functions are also discussed. >

[1]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[2]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[3]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[4]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[5]  P. Danielsson Euclidean distance mapping , 1980 .

[6]  Narendra Ahuja,et al.  DOT PATTERN PROCESSING USING VORONOI POLYGONS AS NEIGHBORHOODS. , 1980 .

[7]  John Fairfield,et al.  Segmenting Dot Patterns by Voronoi Diagram Concavity , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[9]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[10]  Gabriella Sanniti di Baja,et al.  Computing Voronoi diagrams in digital pictures , 1986, Pattern Recognit. Lett..

[11]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[12]  Toshihide Ibaraki,et al.  Distances defined by neighborhood sequences , 1986, Pattern Recognit..

[13]  Partha Pratim Das,et al.  Distance functions in digital geometry , 1987, Inf. Sci..

[14]  Fernand Klein,et al.  Euclidean distance transformations and model-guided image interpretation , 1987, Pattern Recognit. Lett..

[15]  Kenneth L. Clarkson,et al.  Approximation algorithms for shortest path motion planning , 1987, STOC.

[16]  Kiriakos N. Kutulakos,et al.  Fast Computation of the Euclidian Distance Maps for Binary Images , 1992, Inf. Process. Lett..

[17]  Ingemar Ragnemalm Neighborhoods for distance transformations using ordered propagation , 1992, CVGIP Image Underst..

[18]  David W. Paglieroni,et al.  Distance transforms: Properties and machine vision applications , 1992, CVGIP Graph. Model. Image Process..