A tutorial on computational classical logic and the sequent calculus
暂无分享,去创建一个
[1] Alexis Saurin,et al. Classical Call-by-Need and Duality , 2011, TLCA.
[2] Simon L. Peyton Jones,et al. Sequent calculus as a compiler intermediate language , 2016, ICFP.
[3] Olivier Laurent,et al. Étude de la polarisation en logique , 2001 .
[4] Philip Wadler,et al. Call-by-value is dual to call-by-name , 2003, ACM SIGPLAN International Conference on Functional Programming.
[5] A. Church. A Set of Postulates for the Foundation of Logic , 1932 .
[6] John C. Reynolds,et al. Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.
[7] Andrew Kennedy,et al. Compiling with continuations, continued , 2007, ICFP '07.
[8] Matthias Felleisen,et al. A call-by-need lambda calculus , 1995, POPL '95.
[9] Jean-Yves Girard,et al. A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.
[10] Philip Wadler. Call-by-Value Is Dual to Call-by-Name - Reloaded , 2005, RTA.
[11] Hugo Herbelin,et al. Minimal Classical Logic and Control Operators , 2003, ICALP.
[12] Gabriel Scherer,et al. Polarised Intermediate Representation of Lambda Calculus with Sums , 2015, LICS.
[13] Simon Peyton Jones,et al. Playing by the rules: rewriting as a practical optimisation technique in GHC , 2001 .
[14] John C. Reynolds,et al. The discoveries of continuations , 1993, LISP Symb. Comput..
[15] Matthias Felleisen,et al. A Syntactic Approach to Type Soundness , 1994, Inf. Comput..
[16] John C. Reynolds,et al. Definitional Interpreters for Higher-Order Programming Languages , 1972, ACM '72.
[17] Jean-Louis Krivine,et al. A call-by-name lambda-calculus machine , 2007, High. Order Symb. Comput..
[18] Hugo Herbelin,et al. The duality of computation , 2000, ICFP '00.
[19] Zena M. Ariola,et al. The Duality of Construction , 2014, ESOP.
[20] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[21] Noam Zeilberger,et al. The logical basis of evaluation order and pattern-matching , 2009 .
[22] Jean-Yves Girard. Locus Solum: From the Rules of Logic to the Logic of Rules , 2001, CSL.
[23] Pierre-Louis Curien,et al. The Duality of Computation under Focus , 2010, IFIP TCS.
[24] Gabriel Scherer. Which types have a unique inhabitant? : Focusing on pure program equivalence. (Quels types ont un habitant unique ? / Quels types ont un habitant unique ? : Focalisons-nous sur l'équivalence de programmes) , 2016 .
[25] Mark N. Wegman,et al. Efficiently computing static single assignment form and the control dependence graph , 1991, TOPL.
[26] Atsushi Ohori,et al. The Logical Abstract Machine: A Curry-Howard Isomorphism for Machine Code , 1999, Fuji International Symposium on Functional and Logic Programming.
[27] Robert Hieb,et al. The Revised Report on the Syntactic Theories of Sequential Control and State , 1992, Theor. Comput. Sci..
[28] R. Kent Dybvig,et al. Revised5 Report on the Algorithmic Language Scheme , 1986, SIGP.
[29] Andrzej Filinski. Declarative Continuations and Categorical Duality , 1989 .
[30] Emmanuel Polonovski. Subsitutions explicites, logique et normalisation. (Explicit substitutions, logic and normalization) , 2004 .
[31] J. Girard,et al. Proofs and types , 1989 .
[32] Amr Sabry,et al. Sequent calculi and abstract machines , 2009, TOPL.
[33] Peter Selinger,et al. Control categories and duality: on the categorical semantics of the lambda-mu calculus , 2001, Mathematical Structures in Computer Science.
[34] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[35] Michel Parigot,et al. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.
[36] Hugo Herbelin. Séquents qu'on calcule: de l'interprétation du calcul des séquents comme calcul de lambda-termes et comme calcul de stratégies gagnantes. (Computing with sequents: on the interpretation of sequent calculus as a calculus of lambda-terms and as a calculus of winning strategies) , 1995 .
[37] Matthias Felleisen,et al. Control operators, the SECD-machine, and the λ-calculus , 1987, Formal Description of Programming Concepts.
[38] Atsushi Ohori. Register Allocation by Proof Transformation , 2003, ESOP.
[39] de Ng Dick Bruijn. Automath A Language for Mathematics , 1973 .
[40] Andrew W. Appel,et al. Compiling with Continuations , 1991 .
[41] Jean-Yves Girard,et al. Linear Logic , 1987, Theor. Comput. Sci..
[42] Guillaume Munch-Maccagnoni. Focalisation and Classical Realisability , 2009, CSL.
[43] JEAN-MARC ANDREOLI,et al. Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..
[44] Zena M. Ariola,et al. Structures for structural recursion , 2015, ICFP.
[45] Timothy G. Griffin,et al. A formulae-as-type notion of control , 1989, POPL '90.
[46] Jean-Yves Girard,et al. On the Unity of Logic , 1993, Ann. Pure Appl. Log..