CG X-1: An Eclipsing Wolf–Rayet ULX in the Circinus Galaxy

We investigated the time-variability and spectral properties of the eclipsing X-ray source Circinus Galaxy X-1 (GG X-1), using Chandra, XMM-Newton and ROSAT. We phase-connected the light curves observed over 20 yr, and we obtained a best-fitting period P = (25,970.0 ± 0.1) s ≈ 7.2 hr, and a period derivative P ˙ / P = ( 10.2 ± 4.6 ) × 10 − 7 yr−1. The X-ray light curve shows asymmetric eclipses, with sharp ingresses and slow, irregular egresses. The eclipse profile and duration vary substantially from cycle to cycle. We show that the X-ray spectra are consistent with a power-law-like component, which is absorbed by neutral and ionized Compton-thin material, and by a Compton-thick, partial-covering medium, which is responsible for the irregular dips. The high X-ray/optical flux ratio rules out the possibility that CG X-1 is a foreground Cataclysmic Variable. In agreement with previous studies, we conclude that it is the first example of a compact ultraluminous X-ray source fed by a Wolf–Rayet star or stripped Helium star. Its unocculted luminosity varies between ≈4 × 1039 erg s−1 and ≈3 × 1040 erg s−1. Both the donor star and the super-Eddington compact object drive powerful outflows. We suggest that the occulting clouds are produced in the wind–wind collision region and in the bow shock in front of the compact object. Among the rare sample of Wolf–Rayet X-ray binaries, CG X-1 is an exceptional target for studies of supercritical accretion and close binary evolution; it is also a likely progenitor of gravitational wave events.

[1]  H. Feng,et al.  Super-Eddington Accretion onto the Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124 , 2019, The Astrophysical Journal.

[2]  L. Ho,et al.  Evidence for Optically Thick, Eddington-limited Winds Driven by Supercritical Accretion , 2018, The Astrophysical Journal.

[3]  T. Maccarone,et al.  Discovery of a transient ultraluminous X-ray source in the elliptical galaxy M86 , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  G. Wiktorowicz,et al.  The Observed versus Total Population of ULXs , 2018, The Astrophysical Journal.

[5]  D. Nagirner,et al.  Timing properties of ULX pulsars: optically thick envelopes and outflows , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[7]  L. Zampieri,et al.  Modelling optical emission of Ultra-luminous X-ray Sources accreting above the Eddington limit , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  E. Heuvel,et al.  High-Mass X-ray Binaries: progenitors of double compact objects , 2018, Proceedings of the International Astronomical Union.

[9]  A. Pollock,et al.  Phase connected X-ray light curve and He II radial velocity measurements of NGC 300 X-1 , 2018, Proceedings of the International Astronomical Union.

[10]  M. Mapelli,et al.  The High Mass X-ray binaries in star-forming galaxies , 2018, Proceedings of the International Astronomical Union.

[11]  T. Maccarone,et al.  X-Ray Variability from the Ultraluminous Black Hole Candidate X-Ray Binary in the Globular Cluster RZ 2109 , 2018, The Astrophysical Journal.

[12]  Caltech,et al.  A tale of two periods: determination of the orbital ephemeris of the super-Eddington pulsar NGC 7793 P13 , 2018, Astronomy & Astrophysics.

[13]  R. Urquhart,et al.  Discovery of two eclipsing X-ray binaries in M 51 , 2018, 1804.01464.

[14]  D. Walton,et al.  Evidence for Pulsar-like Emission Components in the Broadband ULX Sample , 2018, 1803.04424.

[15]  D. Walton,et al.  Evidence for a variable Ultrafast Outflow in the newly discovered Ultraluminous Pulsar NGC 300 ULX-1 , 2018, Monthly Notices of the Royal Astronomical Society.

[16]  A. Moffat,et al.  Modelling the colliding-wind spectra of the WC8d+O8-9IV binary CV Ser (WR 113) , 2018 .

[17]  G. Vasilopoulos,et al.  Discovery of pulsations from NGC 300 ULX1 and its fast period evolution , 2018, 1802.10341.

[18]  S. Fabrika,et al.  Optical Counterparts of Ultraluminous X-Ray Sources NGC 4559 X-10 and NGC 4395 ULX-1 , 2018 .

[19]  T. Kupfer,et al.  Spectral models for binary products: Unifying subdwarfs and Wolf-Rayet stars as a sequence of stripped-envelope stars , 2018, Astronomy & Astrophysics.

[20]  M. Gurwell,et al.  The hypersoft state of Cygnus X-3 - A key to jet quenching in X-ray binaries? , 2017, 1712.07933.

[21]  Y. Nazé,et al.  A Changing Wind Collision , 2017, 1712.05625.

[22]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[23]  M. Mapelli,et al.  Merging black hole binaries: the effects of progenitor's metallicity, mass-loss rate and Eddington factor , 2017, 1711.03556.

[24]  N. Langer,et al.  On the optically-thick winds of Wolf-Rayet stars , 2017, 1710.04543.

[25]  M. Bachetti,et al.  ULX spectra revisited: Accreting, highly magnetized neutron stars as the engines of ultraluminous X-ray sources , 2017, 1710.04953.

[26]  V. Lipunov,et al.  Wolf–Rayet stars, black holes and the first detected gravitational wave source , 2017, 1707.06199.

[27]  G. Wiktorowicz,et al.  The Origin of the Ultraluminous X-Ray Sources , 2017, 1705.06155.

[28]  T. Roberts,et al.  Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources , 2017, 1705.04235.

[29]  I. Mandel,et al.  Ultra-luminous X-ray sources and neutron-star-black-hole mergers from very massive close binaries at low metallicity , 2017, 1705.04734.

[30]  Philip Kaaret,et al.  Ultraluminous X-Ray Sources , 2017, 1703.10728.

[31]  K. Mukai X-Ray Emissions from Accreting White Dwarfs: A Review , 2017, 1703.06171.

[32]  S. Tsygankov,et al.  SMC X-3: the closest ultraluminous X-ray source powered by a neutron star with non-dipole magnetic field , 2017, 1702.00966.

[33]  S. Mereghetti,et al.  Pulsator-like Spectra from Ultraluminous X-Ray Sources and the Search for More Ultraluminous Pulsars , 2017, 1701.03595.

[34]  S. D. Mink,et al.  Forming short-period Wolf–Rayet X-ray binaries and double black holes through stable mass transfer , 2017, 1701.02355.

[35]  D. Walton,et al.  From ultraluminous X-ray sources to ultraluminous supersoft sources: NGC 55 ULX, the missing link , 2016, 1612.05569.

[36]  A. Raga,et al.  Bow shock nebulae of hot massive stars in a magnetized medium , 2016, 1610.00543.

[37]  Joern Wilms,et al.  An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907 , 2016, Science.

[38]  D. Walton,et al.  DISCOVERY OF COHERENT PULSATIONS FROM THE ULTRALUMINOUS X-RAY SOURCE NGC 7793 P13 , 2016, 1609.07129.

[39]  J. Greiner,et al.  Discovery of a 0.42-s pulsar in the ultraluminous X-ray source NGC 7793 P13 , 2016, 1609.06538.

[40]  Song-Yun Wang,et al.  CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES IN NEARBY GALAXIES. II. X-RAY LUMINOSITY FUNCTIONS AND ULTRALUMINOUS X-RAY SOURCES , 2016, 1609.05415.

[41]  R. Urquhart,et al.  TWO ECLIPSING ULTRALUMINOUS X-RAY SOURCES IN M51 , 2016, 1608.01111.

[42]  D. Barret,et al.  AN IRON K COMPONENT TO THE ULTRAFAST OUTFLOW IN NGC 1313 X-1 , 2016, 1607.03124.

[43]  K. Van,et al.  Stability of mass transfer from massive giants: double black hole binary formation and ultraluminous X-ray sources , 2016, 1606.04921.

[44]  A. Fabian,et al.  Resolved atomic lines reveal outflows in two ultraluminous X-ray sources , 2016, Nature.

[45]  D. Walton,et al.  Keck/MOSFIRE spectroscopy of five ULX counterparts , 2016, 1603.07024.

[46]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[47]  Javier A. García,et al.  ON THE SPIN OF THE BLACK HOLE IN IC 10 X–1 , 2015, 1512.03414.

[48]  A. Kong,et al.  Revisiting the ultraluminous supersoft source in M 101: an optically thick outflow model , 2015, 1511.04797.

[49]  M. Mapelli,et al.  Periodic signals from the Circinus region: two new cataclysmic variables and the ultraluminous X-ray source candidate GC X-1 , 2015, 1506.05808.

[50]  T. Maccarone,et al.  Revisiting the dynamical case for a massive black hole in IC10 X-1 , 2015, 1506.03882.

[51]  B. Williams,et al.  Energy-Dependent Orbital Phases in NGC 300 X-1 , 2015, 1506.03092.

[52]  A. Sa̧dowski,et al.  NATURE OF THE EXTREME ULTRALUMINOUS X-RAY SOURCES , 2015, 1503.08745.

[53]  J. Puls,et al.  The ephemeris, orbital decay, and masses of 10 eclipsing HMXBs , 2015, 1502.07126.

[54]  D. Walton,et al.  A spectral-timing model for ULXs in the supercritical regime , 2014, 1412.4532.

[55]  S. Laycock,et al.  Chandra and XMM monitoring of the black hole X-ray binary IC 10 X-1 , 2014, 1410.3417.

[56]  G. Pietrzynski,et al.  A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source , 2014, Nature.

[57]  Cambridge,et al.  An ultraluminous X-ray source powered by an accreting neutron star , 2014, Nature.

[58]  R. Grijs Binary systems, their evolution and environments , 2014 .

[59]  U. Kolb,et al.  ENERGY-DEPENDENT EVOLUTION IN IC10 X-1: HARD EVIDENCE FOR AN EXTENDED CORONA AND IMPLICATIONS , 2014, 1407.5650.

[60]  T. Maccarone,et al.  COMPOSITION OF AN EMISSION LINE SYSTEM IN BLACK HOLE HOST GLOBULAR CLUSTER RZ2109 , 2014, 1403.2784.

[61]  L. Burderi,et al.  Chandra X-ray spectroscopy of a clear dip in GX 13+1 , 2014, 1403.0071.

[62]  N. Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.

[63]  T. Maccarone,et al.  A new candidate Wolf-Rayet X-ray binary in NGC 253 , 2014, 1401.5425.

[64]  J. Bregman,et al.  Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1 , 2013, Nature.

[65]  T. Treu,et al.  AN ENVIRONMENTAL STUDY OF THE ULTRALUMINOUS X-RAY SOURCE POPULATION IN EARLY-TYPE GALAXIES , 2013, 1311.4544.

[66]  Didier Barret,et al.  AN EXTREMELY LUMINOUS AND VARIABLE ULTRALUMINOUS X-RAY SOURCE IN THE OUTSKIRTS OF CIRCINUS OBSERVED WITH NuSTAR , 2013, 1310.2633.

[67]  M. Mapelli,et al.  Discovery of a 6.4 h black hole binary in NGC 4490 , 2013, 1309.6328.

[68]  T. Roberts,et al.  The ultraluminous state revisited: fractional variability and spectral shape as diagnostics of super-Eddington accretion , 2013, 1307.8044.

[69]  Ting-Chang Yang,et al.  SUPERORBITAL PHASE-RESOLVED ANALYSIS OF SMC X-1 , 2013, 1306.5819.

[70]  K. Makishima,et al.  Footprints in the wind of Vela X-1 traced with MAXI , 2013, 1304.5965.

[71]  Liverpool John Moores University,et al.  OPTICAL COUNTERPARTS OF THE NEAREST ULTRALUMINOUS X-RAY SOURCES , 2013, 1303.1213.

[72]  H. F. Astrophysics,et al.  A VARIABLE ULTRALUMINOUS X-RAY SOURCE IN A GLOBULAR CLUSTER IN NGC 4649 , 2012, 1210.5163.

[73]  I. Mandel,et al.  CYG X-3: A GALACTIC DOUBLE BLACK HOLE OR BLACK-HOLE–NEUTRON-STAR PROGENITOR , 2012, 1209.2658.

[74]  A. Zdziarski,et al.  Cyg X-3: a low-mass black hole or a neutron star. , 2012, 1208.5455.

[75]  T. Jarrett,et al.  Gas and star formation in the Circinus galaxy , 2012, 1206.4102.

[76]  G. Skinner,et al.  Energy-dependent orbital modulation of X-rays and constraints on emission of the jet in Cyg X-3 , 2012, 1205.4402.

[77]  W. Schmutz,et al.  NEW X-RAY DETECTIONS OF WNL STARS , 2012, 1203.5098.

[78]  B. Whitmore,et al.  THE BIRTH OF AN ULTRALUMINOUS X-RAY SOURCE IN M83 , 2012, 1203.2335.

[79]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES , 2012, 1202.4901.

[80]  A. Lamberts,et al.  Impact of orbital motion on the structure and stability of adiabatic shocks in colliding wind binaries , 2012, 1202.2060.

[81]  S. Zhekov X-rays from colliding stellar winds: the case of close Wolf–Rayet+O binary systems , 2012, 1202.1386.

[82]  D. Swartz,et al.  A COMPLETE SAMPLE OF ULTRALUMINOUS X-RAY SOURCE HOST GALAXIES , 2011 .

[83]  Hua Feng,et al.  Ultraluminous X-ray sources in the Chandra and XMM-Newton era , 2011, 1109.1610.

[84]  D. Walton,et al.  2XMM ultraluminous X-ray source candidates in nearby galaxies , 2011, 1106.0197.

[85]  P. Kaaret,et al.  COMPACT OPTICAL COUNTERPARTS OF ULTRALUMINOUS X-RAY SOURCES , 2011, 1106.0315.

[86]  R. Sunyaev,et al.  X-ray emission from star-forming galaxies – I. High-mass X-ray binaries , 2011, 1105.4610.

[87]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[88]  A. Norton,et al.  RXTE and XMM observations of intermediate polar candidates , 2010, 1011.5762.

[89]  J. Solheim AM CVn Stars: Status and Challenges , 2010 .

[90]  Thomas J. Maccarone,et al.  A VARIABLE BLACK HOLE X-RAY SOURCE IN AN NGC 1399 GLOBULAR CLUSTER , 2010, 1007.4768.

[91]  C. Shrader,et al.  NEW EVIDENCE FOR A BLACK HOLE IN THE COMPACT BINARY CYGNUS X-3 , 2010, 1005.5362.

[92]  M. McCollough,et al.  The hardness–intensity diagram of Cygnus X-3: revisiting the radio/X-ray states , 2010, 1003.4351.

[93]  Spain.,et al.  NGC 300 X‐1 is a Wolf–Rayet/black hole binary★ , 2010, 1001.4616.

[94]  T. P. Roberts,et al.  The Ultraluminous State , 2009, 0905.4076.

[95]  Chris L. Fryer,et al.  ON THE MAXIMUM MASS OF STELLAR BLACK HOLES , 2009, 0904.2784.

[96]  H. Courtois,et al.  THE EXTRAGALACTIC DISTANCE DATABASE , 2009, 0902.3668.

[97]  S. Bianchi,et al.  VARIABLE PARTIAL COVERING AND A RELATIVISTIC IRON LINE IN NGC 1365 , 2009, 0901.4809.

[98]  S. Bianchi,et al.  The XMM–Newton long look of NGC 1365: uncovering of the obscured X-ray source , 2008, 0811.1594.

[99]  J. Pittard,et al.  A 3D dynamical model of the colliding winds in binary systems , 2008, 0805.4529.

[100]  S. Smartt,et al.  Supernova 1996cr: SN 1987A’s Wild Cousin? , 2008, 0804.3597.

[101]  T. Bulik,et al.  IC10 X-1/NGC300 X-1: THE VERY IMMEDIATE PROGENITORS OF BH–BH BINARIES , 2008, 0803.3516.

[102]  Alexei V. Filippenko,et al.  On IC 10 X-1, the Most Massive Known Stellar-Mass Black Hole , 2008, 0802.2716.

[103]  M. Guerrero,et al.  An X-Ray Survey of Wolf-Rayet Stars in the Magellanic Clouds. I. The Chandra ACIS Data Set , 2008, 0802.0503.

[104]  Y. Chou,et al.  A Parameterization Study of the Properties of the X-Ray Dips in the Low-Mass X-Ray Binary X1916–053 , 2007, 0712.1868.

[105]  G. Ramsay The X-ray spectrum of RX J1914.4+2456 revisited , 2007, 0711.2449.

[106]  M. McCollough,et al.  The nature of the hard state of Cygnus X-3 , 2007, 0707.2032.

[107]  A. Pollock,et al.  A 33 hour period for the Wolf-Rayet/black hole X-ray binary candidate NGC 300 X-1 , 2007, astro-ph/0703270.

[108]  T. Maccarone,et al.  A black hole in a globular cluster , 2007, Nature.

[109]  P. Crowther,et al.  Physical Properties of Wolf-Rayet Stars , 2006, astro-ph/0610356.

[110]  Juri Poutanen,et al.  Supercritically accreting stellar mass black holes as ultraluminous X-ray sources , 2006, astro-ph/0609274.

[111]  Michael A. Nowak,et al.  CIAO: Chandra's data analysis system , 2006, SPIE Astronomical Telescopes + Instrumentation.

[112]  N. Schulz,et al.  Determining the Nature of the SS 433 Binary from an X-Ray Spectrum during Eclipse , 2006, astro-ph/0605574.

[113]  S. Rappaport,et al.  Discovery of a 3.6 hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214 , 2006, astro-ph/0604466.

[114]  T. P. Roberts,et al.  XMM–Newton observations of the brightest ultraluminous X-ray sources , 2006, astro-ph/0601651.

[115]  France,et al.  Spectral changes during dipping in low-mass X-ray binaries due to highly-ionized absorbers , 2005, astro-ph/0509342.

[116]  G. Nelemans,et al.  Cygnus X-3 and the problem of the missing Wolf-Rayet X-ray binaries , 2005, astro-ph/0507304.

[117]  Christine Jones,et al.  SUBMITTED TO The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/12/01 THE DIFFUSE EMISSION AND A VARIABLE ULX IN THE ELLIPTICAL GALAXY NGC 3379 , 2005 .

[118]  M. Mori,et al.  Supercritical Accretion Flows around Black Holes: Two-dimensional, Radiation Pressure-dominated Disks with Photon Trapping , 2005, astro-ph/0504168.

[119]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[120]  A. Taylor,et al.  Colliding Winds in Symbiotic Binary Systems. I. Analytic and Numerical Solutions , 2005 .

[121]  B. Zauderer,et al.  High-Resolution Radio Observations of the Colliding-Wind Binary WR 140 , 2005, astro-ph/0501391.

[122]  J. Bregman,et al.  Ultraluminous X-Ray Sources in Nearby Galaxies from ROSAT High Resolution Imager Observations I. Data Analysis , 2005, astro-ph/0501309.

[123]  M. Cropper,et al.  XMM-Newton observations of the ultra-compact binary RX J1914+24 , 2004, astro-ph/0412284.

[124]  Ralph S. Sutherland,et al.  Astrophysics of the Diffuse Universe , 2004 .

[125]  Douglas A. Swartz,et al.  The Ultraluminous X-Ray Source Population from the Chandra Archive of Galaxies , 2004, astro-ph/0405498.

[126]  P. Massey Massive Stars in the Local Group: Implications for Stellar Evolution and Star Formation , 2003 .

[127]  M. Weisskopf,et al.  Submitted to The Astrophysical Journal. On the Nature of the Bright Short-Period X-ray Source in the Circinus Galaxy Field , 2003 .

[128]  W. Brandt,et al.  Chandra and Hubble Space Telescope Confirmation of the Luminous and Variable X-Ray Source IC 10 X-1 as a Possible Wolf-Rayet, Black Hole Binary , 2003, astro-ph/0310039.

[129]  Cambridge,et al.  Black hole winds , 2003, astro-ph/0305541.

[130]  M. Sako,et al.  Resolving the Effects of Resonant X-Ray Line Scattering in Centaurus X-3 with Chandra , 2003 .

[131]  A. Fabian,et al.  Flux and spectral variations in the Circinus Galaxy , 2002, astro-ph/0209583.

[132]  M. Pakull,et al.  Optical Counterparts of Ultraluminous X-Ray Sources , 2002, astro-ph/0202488.

[133]  M. Cropper,et al.  Optical/infrared spectroscopy and photometry of the short-period binary RX J1914+24 , 2002, astro-ph/0202281.

[134]  W. Cui,et al.  Discovery of Two Types of X-Ray Dips in Cygnus X-1 , 2001, astro-ph/0112160.

[135]  Norbert S. Schulz,et al.  The Ionized Stellar Wind in Vela X-1 during Eclipse , 2001, astro-ph/0111489.

[136]  W. Brandt,et al.  A Chandra Study of the Circinus Galaxy Point-Source Population , 2001, astro-ph/0104035.

[137]  N. Benı́tez,et al.  The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys , 2005, astro-ph/0507614.

[138]  M. Sako,et al.  The X-Ray Spectrum and Global Structure of the Stellar Wind in Vela X-1 , 1999, astro-ph/9907291.

[139]  A. Schwarzenberg-Czerny,et al.  The Correct Probability Distribution for the Phase Dispersion Minimization Periodogram , 1997 .

[140]  F. Wilkin Exact Analytic Solutions for Stellar Wind Bow Shocks , 1996 .

[141]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[142]  Keith A. Arnaud,et al.  An ionized accretion disk in Cygnus X-1 , 1992 .

[143]  V. Usov Stellar wind collision and X-ray generation in massive binaries , 1992 .

[144]  A. Pollock,et al.  Colliding Winds from Early-Type Stars in Binary Systems , 1992 .

[145]  J. Patterson,et al.  X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation , 1985 .

[146]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[147]  D. Meier The structure and appearance of winds from supercritical accretion disks. III - Thermal and spectral properties of supercritical winds. IV - Analytic results with applications , 1982 .

[148]  Nicholas E. White,et al.  The discovery of 50 minute periodic absorption events from 4U 1915-05 , 1982 .

[149]  R. Stellingwerf Period determination using phase dispersion minimization , 1978 .

[150]  R. Weaver,et al.  Interstellar bubbles. II - Structure and evolution , 1977 .

[151]  E. J. A. Meurs,et al.  Populations of high energy sources in galaxies , 2006 .

[152]  P. M. Williams,et al.  Bulk Velocities, Chemical Composition, and Ionization Structure of the X-Ray Shocks in WR 140 near Periastron as Revealed by the Chandra Gratings , 2005 .

[153]  Astronomy & Astrophysics manuscript no. , 1991 .

[154]  D. Raine,et al.  Accretion power in astrophysics , 1985 .

[155]  S. Huang Modes of Mass Ejection by Binary Stars and the Effect on Their Orbital Periods. , 1963 .