Altering Drosophila S6 kinase activity is consistent with a role for S6 kinase in growth

[1]  P. Brennan,et al.  Regulation of an Activated S6 Kinase 1 Variant Reveals a Novel Mammalian Target of Rapamycin Phosphorylation Site* , 2002, The Journal of Biological Chemistry.

[2]  L. Johnston,et al.  Control of growth and organ size in Drosophila , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[3]  Kenta Hara,et al.  Immunopurified Mammalian Target of Rapamycin Phosphorylates and Activates p70 S6 Kinase α in Vitro * , 1999, The Journal of Biological Chemistry.

[4]  G. Thomas,et al.  Ribosomal S6 kinase signaling and the control of translation. , 1999, Experimental cell research.

[5]  E. Hafen,et al.  Drosophila S6 kinase: a regulator of cell size. , 1999, Science.

[6]  S. Schreiber,et al.  Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Stefano Fumagalli,et al.  Disruption of the p70s6k/p85s6k gene reveals a small mouse phenotype and a new functional S6 kinase , 1998, The EMBO journal.

[8]  Joseph Avruch,et al.  Regulation of the p70 S6 Kinase by Phosphorylation in Vivo , 1998, The Journal of Biological Chemistry.

[9]  R. Pearson,et al.  Phosphorylation Sites in the Autoinhibitory Domain Participate in p70s6k Activation Loop Phosphorylation* , 1998, The Journal of Biological Chemistry.

[10]  J. Avruch,et al.  Amino Acid Sufficiency and mTOR Regulate p70 S6 Kinase and eIF-4E BP1 through a Common Effector Mechanism* , 1998, The Journal of Biological Chemistry.

[11]  A. Gingras,et al.  4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. , 1998, Genes & development.

[12]  A. Gingras,et al.  The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k , 1997, Molecular and cellular biology.

[13]  G. Thomas,et al.  The modular phosphorylation and activation of p70s6k , 1997, FEBS letters.

[14]  G. Thomas,et al.  The principal rapamycin-sensitive p70(s6k) phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive kinase kinases , 1996, Molecular and cellular biology.

[15]  G. Thomas,et al.  The Drosophila p70s6k homolog exhibits conserved regulatory elements and rapamycin sensitivity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Pearson,et al.  The principal target of rapamycin‐induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. , 1995, The EMBO journal.

[17]  R. Pearson,et al.  Rapamycin, Wortmannin, and the Methylxanthine SQ20006 Inactivate p70s6k by Inducing Dephosphorylation of the Same Subset of Sites (*) , 1995, The Journal of Biological Chemistry.