Hemispheric specialization for processing auditory nonspeech stimuli.

The left hemisphere specialization for speech perception might arise from asymmetries at more basic levels of auditory processing. In particular, it has been suggested that differences in "temporal" and "spectral" processing exist between the hemispheres. Here we used functional magnetic resonance imaging to test this hypothesis further. Fourteen healthy volunteers listened to sequences of alternating pure tones that varied in the temporal and spectral domains. Increased temporal variation was associated with activation in Heschl's gyrus (HG) bilaterally, whereas increased spectral variation activated the superior temporal gyrus (STG) bilaterally and right posterior superior temporal sulcus (STS). Responses to increased temporal variation were lateralized to the left hemisphere; this left lateralization was greater in posteromedial HG, which is presumed to correspond to the primary auditory cortex. Responses to increased spectral variation were lateralized to the right hemisphere specifically in the anterior STG and posterior STS. These findings are consistent with the notion that the hemispheres are differentially specialized for processing auditory stimuli even in the absence of linguistic information.

[1]  S. Tobimatsu,et al.  Left hemisphere specialization for rapid temporal processing: a study with auditory 40Hz steady-state responses , 2005, Clinical Neurophysiology.

[2]  H. Damasio,et al.  Auditory perception of temporal and spectral events in patients with focal left and right cerebral lesions , 1990, Brain and Language.

[3]  C. Micheyl,et al.  Peripheral auditory lateralization assessment using TEOAEs , 1998, Hearing Research.

[4]  R. Bowtell,et al.  “sparse” temporal sampling in auditory fMRI , 1999, Human brain mapping.

[5]  David Swinney,et al.  Functional MR Imaging during Auditory Word Perception: A Single-Trial Presentation Paradigm , 1997, Brain and Language.

[6]  J. E Adcock,et al.  Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy , 2003, NeuroImage.

[7]  R. Efron TEMPORAL PERCEPTION, APHASIA AND D'EJ'A VU. , 1963, Brain : a journal of neurology.

[8]  Sophie K. Scott,et al.  The functional neuroanatomy of prelexical processing in speech perception , 2004, Cognition.

[9]  N. F. Ramsey,et al.  Reproducibility of fMRI-Determined Language Lateralization in Individual Subjects , 2002, Brain and Language.

[10]  R. Zatorre,et al.  Voice-selective areas in human auditory cortex , 2000, Nature.

[11]  L. V. Noorden Temporal coherence in the perception of tone sequences , 1975 .

[12]  B C Moore,et al.  Effects of frequency and level on auditory stream segregation. , 2000, The Journal of the Acoustical Society of America.

[13]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[14]  David Poeppel,et al.  The analysis of speech in different temporal integration windows: cerebral lateralization as 'asymmetric sampling in time' , 2003, Speech Commun..

[15]  R. Patterson,et al.  The Processing of Temporal Pitch and Melody Information in Auditory Cortex , 2002, Neuron.

[16]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[17]  Angela D Friederici,et al.  � Human Brain Mapping 24:11–20(2005) � Voice Perception: Sex, Pitch, and the Right Hemisphere , 2022 .

[18]  Isabelle Peretz,et al.  Brains That Are out of Tune but in Time , 2004, Psychological science.

[19]  A. Boemio,et al.  Hierarchical and asymmetric temporal sensitivity in human auditory cortices , 2005, Nature Neuroscience.

[20]  A. R. Jennings,et al.  Analysis of the spectral envelope of sounds by the human brain , 2005, NeuroImage.

[21]  D. Buxhoeveden,et al.  Comparative lateralisation patterns in the language area of human, chimpanzee, and rhesus monkey brains , 2000, Laterality.

[22]  B. Anderson,et al.  Anatomic asymmetries of the posterior superior temporal lobes: a postmortem study. , 1999, Neuropsychiatry, neuropsychology, and behavioral neurology.

[23]  Mario Dzemidzic,et al.  A cross‐linguistic fMRI study of perception of intonation and emotion in Chinese , 2003, Human brain mapping.

[24]  Mario Dzemidzic,et al.  Hemispheric roles in the perception of speech prosody , 2004, NeuroImage.

[25]  M. Tervaniemi,et al.  Lateralization of auditory-cortex functions , 2003, Brain Research Reviews.

[26]  Andrew J Oxenham,et al.  A Neural Representation of Pitch Salience in Nonprimary Human Auditory Cortex Revealed with Functional Magnetic Resonance Imaging , 2004, The Journal of Neuroscience.

[27]  Masaru Mimura,et al.  Impaired pitch production and preserved rhythm production in a right brain-damaged patient with amusia , 2004, Brain and Cognition.

[28]  Alan C. Evans,et al.  Event-Related fMRI of the Auditory Cortex , 1998, NeuroImage.

[29]  J. Rauschecker,et al.  Hierarchical Organization of the Human Auditory Cortex Revealed by Functional Magnetic Resonance Imaging , 2001, Journal of Cognitive Neuroscience.

[30]  A S Bregman,et al.  Auditory streaming is cumulative. , 1978, Journal of experimental psychology. Human perception and performance.

[31]  P. Matthews,et al.  Defining a left-lateralized response specific to intelligible speech using fMRI. , 2003, Cerebral cortex.

[32]  R. Zatorre,et al.  Spectral and temporal processing in human auditory cortex. , 2001, Cerebral cortex.

[33]  J. D. Warren,et al.  Separating pitch chroma and pitch height in the human brain , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  T Wüstenberg,et al.  Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study , 2004, The European journal of neuroscience.

[35]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[36]  S. Palva,et al.  Discrimination of Speech and of Complex Nonspeech Sounds of Different Temporal Structure in the Left and Right Cerebral Hemispheres , 2000, NeuroImage.

[37]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[38]  T. Ohnishi,et al.  Functional anatomy of musical perception in musicians , 2001, NeuroImage.

[39]  Left hemisphere specialization for rapid temporal processing : a study with auditory 40 Hz steady-state responses , 2005 .

[40]  Y. Samson,et al.  Lateralization of Speech and Auditory Temporal Processing , 1998, Journal of Cognitive Neuroscience.

[41]  G. Rollman,et al.  Hemispheric asymmetry for auditory perception of temporal order , 1980, Neuropsychologia.

[42]  W. Edmister,et al.  Nonlinearity of FMRI responses in human auditory cortex , 2004, Human brain mapping.

[43]  T. Bever,et al.  Cerebral Dominance in Musicians and Nonmusicians , 1974, Science.

[44]  C. Wernicke Der aphasische Symptomencomplex: Eine psychologische Studie auf anatomischer Basis , 1874 .

[45]  P. Chauvel,et al.  Specialization of left auditory cortex for speech perception in man depends on temporal coding. , 1999, Cerebral cortex.

[46]  R. Galuske,et al.  Hemispheric asymmetries in cerebral cortical networks , 2003, Trends in Neurosciences.

[47]  P Tallal,et al.  Developmental aphasia: rate of auditory processing and selective impairment of consonant perception. , 1974, Neuropsychologia.

[48]  John G. Neuhoff,et al.  Spatiotemporal Pattern of Neural Processing in the Human Auditory Cortex , 2002, Science.

[49]  Irina S. Sigalovsky,et al.  Short-term sound temporal envelope characteristics determine multisecond time patterns of activity in human auditory cortex as shown by fMRI. , 2005, Journal of neurophysiology.

[50]  M. Lowe,et al.  A Cross-Linguistic fMRI Study of Spectral and Temporal Cues Underlying Phonological Processing , 2002, Journal of Cognitive Neuroscience.

[51]  S. Scott,et al.  Identification of a pathway for intelligible speech in the left temporal lobe. , 2000, Brain : a journal of neurology.

[52]  Alan R. Palmer,et al.  A high-output, high-quality sound system for use in auditory fMRI , 1998, NeuroImage.

[53]  S. Clarke,et al.  Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas , 1997, NeuroImage.

[54]  Richard S. J. Frackowiak,et al.  Analysis of temporal structure in sound by the human brain , 1998, Nature Neuroscience.

[55]  G. Hutchins,et al.  Functional Heterogeneity of Inferior Frontal Gyrus Is Shaped by Linguistic Experience , 2001, Brain and Language.

[56]  M. Nicholls,et al.  Psychophysical and electrophysiologic support for a left hemisphere temporal processing advantage. , 1999, Neuropsychiatry, neuropsychology, and behavioral neurology.

[57]  P. Tallal,et al.  Rate of acoustic change may underlie hemispheric specialization for speech perception , 1980, Science.

[58]  Alan C. Evans,et al.  Neural mechanisms underlying melodic perception and memory for pitch , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  I. Johnsrude,et al.  Spectral and temporal processing in human auditory cortex. , 2002, Cerebral cortex.

[60]  T Morlet,et al.  Development of human cochlear active mechanism asymmetry: involvement of the medial olivocochlear system? , 1999, Hearing Research.

[61]  B. Cone-Wesson,et al.  Asymmetric Cochlear Processing Mimics Hemispheric Specialization , 2004, Science.

[62]  D. Lancker,et al.  A Crosslinguistic PET Study of Tone Perception , 2000, Journal of Cognitive Neuroscience.

[63]  R. Näätänen,et al.  Hemispheric processing of duration changes in speech and non-speech sounds , 2004, Neuroreport.

[64]  B. Volpe,et al.  Selective loss of complex-pitch or speech discrimination after unilateral lesion , 1988, Brain and Language.

[65]  P. Tallal,et al.  Developmental aphasia: The perception of brief vowels and extended stop consonants , 1975, Neuropsychologia.

[66]  A. Palmer,et al.  Histochemical identification of cortical areas in the auditory region of the human brain , 2002, Experimental Brain Research.

[67]  R. Zatorre,et al.  Functional specificity in the right human auditory cortex for perceiving pitch direction. , 2000, Brain : a journal of neurology.

[68]  Stephen M. Smith,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[69]  R. Zatorre,et al.  Human temporal-lobe response to vocal sounds. , 2002, Brain research. Cognitive brain research.

[70]  P. Tallal,et al.  Defects of Non-Verbal Auditory Perception in Children with Developmental Aphasia , 1973, Nature.

[71]  Alan C. Evans,et al.  Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. , 1996, Cerebral cortex.

[72]  J B Poline,et al.  A cortical region sensitive to auditory spectral motion , 2000, Neuroreport.

[73]  浜中 淑彦 Carl Wernicke;Der aphasische Symptomencomplex--Eine psychologische Studie auf anatomischer Basis(「失語症候群--解剖学的基礎に立つ心理学的研究」,Max Cohn & Weigert,Breslau,1874) , 1975 .

[74]  Katherine J. Alcock,et al.  Pitch and Timing Abilities in Adult Left-Hemisphere-Dysphasic and Right-Hemisphere-Damaged Subjects , 2000, Brain and Language.