Well-posedness of systems of 1-D hyperbolic partial differential equations

[1]  Bjorn Augner Stabilisation of Infinite-Dimensional Port-Hamiltonian Systems via Dissipative Boundary Feedback , 2018 .

[2]  Marjeta Kramar Fijavvz,et al.  Waves and diffusion on metric graphs with general vertex conditions , 2017, Evolution Equations & Control Theory.

[3]  Delio Mugnolo,et al.  Airy-type evolution equations on star graphs , 2016, 1608.01461.

[4]  G. Bastin,et al.  Stability and Boundary Stabilization of 1-D Hyperbolic Systems , 2016 .

[5]  Hans Zwart,et al.  C0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain , 2014, 1409.6524.

[6]  Delio Mugnolo Semigroup Methods for Evolution Equations on Networks , 2014 .

[7]  Hans Zwart,et al.  Linear wave systems on n-D spatial domains , 2014, Int. J. Control.

[8]  Bjorn Augner,et al.  Stability and Stabilization of Infinite-dimensional Linear Port-Hamiltonian Systems , 2013, 1312.4307.

[9]  M. Waurick,et al.  Boundary systems and (skew‐)self‐adjoint operators on infinite metric graphs , 2013, 1308.2635.

[10]  Klaus-Jochen Engel,et al.  Generator property and stability for generalized difference operators , 2013 .

[11]  Hans Zwart,et al.  Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain , 2010 .

[12]  J. A. Villegas,et al.  A Port-Hamiltonian Approach to Distributed Parameter Systems , 2007 .

[13]  R. Nagel,et al.  A Short Course on Operator Semigroups , 2006 .

[14]  Hans Zwart,et al.  Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators , 2005, SIAM J. Control. Optim..

[15]  W. R. Howard,et al.  Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness , 2005 .

[16]  A. Schaft,et al.  Hamiltonian formulation of distributed-parameter systems with boundary energy flow , 2002 .

[17]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[18]  R. Schrader,et al.  Kirchhoff's rule for quantum wires , 1998, math-ph/9806013.